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ABSTRACT 
  Short-term load forecasting is a fundamental 
task in reliable and secure power system operation, 
particularly in the current landscape marked by 
increased integration of renewable energy sources and 
electric vehicles, which introduces stochasticity and 
raises uncertainty. To express uncertainty in load 
predictions in the form of a probabilistic forecast, 
prediction intervals are generated. The variability in load 
values exhibits higher volatility during the day due to 
increased human activities, contrasting with lower 
variability at night. Classic methods for constructing 
prediction intervals cannot correctly model the 
variability in uncertainty leading to overly conservative 
prediction intervals. In this paper, we propose a novel 
approach – conformalized quantile regression – to create 
more informative, variable-length prediction intervals. 
Experimental results, based on a real load dataset from 
the Croatian Transmission System, showcase the 
method's superior performance in capturing adaptive-
length prediction intervals. This translates to achieving 
higher coverage with shorter prediction intervals 
compared to conventional methods. 
 
Keywords: probabilistic load forecasting, short term load 
forecasting, conformalized quantile regression, 
prediction interval, random forest  

NONMENCLATURE 

Abbreviations  

STLF Short-Term Load Forecasting 
PI Prediction Interval 
CQR Conformalized Quantile Regression 
QR Quantile Regression 
CP Conformal Prediction 
TSO Transmission System Operator 

LF Load Forecasting 
AI Artificial Intelligence 
ML Machine Learning 
ANN Artificial Neural Network 
PLF Probabilistic Load Forecasting 
KDE Kernel Density Estimation 
RF Random Forest 
QRF Quantile Random Forest 

PICP 
Prediction Interval Coverage 
Probability 

MPIW Mean Prediction Interval Width 

Symbols  

Lh-n 
Load in the n-th hour before the 
current hour, h 

k 
Indicator binary variable: is the test 
set observation or not covered by the 
constructed PI? 

yi i-th observation in the test set 
yli Lower bound of the i-th PI 
yui Upper bound of the i-th PI 

1. INTRODUCTION 
Recently, the impacts of the rapidly changing climate 

have become more prominent and manifest in extreme 
weather conditions, already affecting the entire world. 
Many countries, organizations, and initiatives are 
committed to reducing emissions, decreasing carbon 
footprint, and achieving carbon neutrality. Several 
significant initiatives address climate change, such as the 
European Green Deal [1], which aims to achieve a 
climate-neutral Europe by 2050, and the Paris 
Agreement [2], which many countries worldwide have 
signed. The Paris Agreement targets to limit global 
warming to 1.5 degrees Celsius and aims to achieve 
carbon neutrality by the mid-21st century. Carbon 
neutrality within power and energy systems can be 
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accomplished by adopting and increasing the integration 
of renewable energy sources, more energy-efficient 
technologies, and low-carbon technologies.   

Introducing renewable energy sources presents 
unique challenges and uncertainties to complex electric 
power systems and their operation. The imbalance of 
generation and load affects the secure and reliable 
operation of the electric power system. Traditionally, the 
electric load or energy demand has always been 
stochastic and unpredictable due to various factors such 
as human activities and weather conditions, and 
generation was planned based on the forecasted load 
values. With the increase in intermittent renewable 
generation, new sources of stochastic and variable 
behavior are emerging on the generation side. 
Developing new forecasting methods to quantify 
emerging uncertainties in power systems is essential. 

Accurate short-term load forecasting (STLF) is a 
crucial task for efficient and reliable power system 
operation and planning, traditionally accomplished by 
operators and planners [3]. With the development of 
market-oriented operations, it has become a 
fundamental task for all participants in the electricity 
market. Short-term load forecasting usually refers to 
forecasting horizons up to two weeks, according to some 
load forecasting (LF) classifications [4]. During the past 
three decades, researchers and practitioners developed 
numerous load-forecasting methods based on artificial 
intelligence (AI) and machine learning (ML) models. The 
power industry saw one of the earliest commercial 
applications of AI in the 1990s when it employed an 
artificial neural network (ANN) for STLF [3]. In the early 
stages of LF research and practice, the main focus was 
deterministic LF [4]. The objective was to forecast a 
single load value without quantifying the uncertainties. 
The most notable and frequently used ML-based 
techniques for deterministic LF include linear regression, 
artificial neural networks, support vector machines, 
gradient-boosting machines, decision trees, and 
ensembles [4], [5]. Probabilistic load forecasting (PLF) 
has become increasingly important as an emerging 
research topic [4]. PLF can quantify prediction 
uncertainty by assigning a probability to the expected 
value. Probabilistic forecasts can be given as quantiles, 
prediction intervals, or probability density functions [4]. 

This paper focuses on probabilistic forecasting 
achieved by constructing prediction intervals (PIs) to 
quantify prediction uncertainty. With high probability, 
the response variable lies within an interval between 
lower and upper bounds known as PI [6]. Two common 
methods for constructing prediction intervals are 

conformal prediction and quantile regression. The basic 
concept of conformal prediction is fitting a regression 
model on the training samples and using the residuals for 
a held-out validation attempting to construct locally 
variable-length PIs. On the other hand, quantile 
regression relies on estimating conditional quantile 
functions and forming the corresponding intervals based 
on specific levels, such as 5% and 95%, to achieve a 90% 
coverage. Y. Romano [6] first introduced the concept of 
combining conformal prediction and quantile regression 
in what is known as Conformalized Quantile Regression 
(CQR). This approach combines the strengths of both 
underlying methods, ensuring the validity of conformal 
prediction and the statistical efficiency of quantile 
regression [6]. Additionally, it is flexible enough to be 
used with any algorithm for quantile regression. Related 
work of adopting the CQR method in power system 
forecasting tasks include [7], [8]. In [7] authors proposed 
a deep neural network model, N-BEATS, for probabilistic 
STLF and demonstrated its effectiveness by constructing 
narrow PIs with expected nominal coverage. In [8] the 
authors presented a novel ensemble-based method, 
ensemble conformalized quantile regression, and tested 
the performance on several real-world datasets (i.e., 
electric load, solar and wind power production, air 
temperature). 

This paper proposes a probabilistic STLF method 
based on CQR, as introduced in [6], using the random 
forest as a base algorithm. The proposed method is 
tested on a real-world electric load dataset provided by 
the Croatian Transmission System Operator, 
demonstrating the capability to produce valid and 
adaptive PIs, shorter in comparison to classic methods 
while maintaining satisfactory nominal coverage on two 
short-term forecasting horizons (one hour and one day 
ahead). The proposed probabilistic STLF method can be 
used with any other quantile regression algorithm (i.e., 
neural network or ensemble models), on other 
forecasting horizons, or with other time-series datasets. 
CQR method performance is analyzed based on 
conformity scores: PI coverage, PI length, and model-
building time (including training and held-out validation). 

2. METHODOLOGY 

2.1 Dataset description 

The research presented in this paper utilized a real-
world load dataset provided by the Croatian 
Transmission System Operator, HOPS. The dataset 
consists of the following historical time-series covering 
the period from January 2018 to December 2022:  
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• historical load data,  

• public holiday data,  

• and air temperature data.  
The temporal resolution of the provided datasets is 

hourly. The spatial granularity of the load dataset 
includes aggregate system-level load values or the mean 
active power absorbed by all loads on the transmission 
network level or transferred to the distribution network. 
The list of public holiday data for the Republic of Croatia 
was retrieved from the holidays [9] library, representing 
non-working days in Croatia. Air temperature for the four 
biggest Croatian cities (Zagreb, Split, Rijeka, and Osijek) 
was attained from the publicly available platform 
Meteostat [10]. 

Figure 1 represents the annual distribution of load 
values given in hourly resolution in the kernel density 
estimation (KDE) form. It illustrates the first (Q1) and the 
third (Q3) quartiles and median load values (Q2) by year, 
where dashed lines inside the violin represent quartiles. 
Violin width denotes the frequency of a particular load 
value in each year. The figure indicates that the violin 
widths and quartile values follow similar annual load 
patterns, except for 2020. During the COVID-19 
lockdown periods in 2020, the load values were visibly 
lower, indicated in all quartile values lower than those in 
other years. Other than annual periodicity, the load 
dataset exhibits daily and weekly periodicities. The daily 
pattern is visible in multiple peak and valley values during 
the 24-hour period, which varies in occurrence and 
duration depending on the season. The weekly 
seasonality is observable in interchanging periods of 
higher load during the work week and lower load during 
the weekend. 

Figure 1: Hourly load distributions by year 
 

The load values are impacted by several weather 
factors, with air temperature having the most significant 
influence [5]. The electricity load decreases when the air 
temperature is around 20°C and increases during higher 
heating and cooling usage. 

 
 

2.2 Feature extraction and feature selection 

This section describes the process of obtaining 
features with data extraction and transformation 
techniques, which are inputs for regression from raw 
data described in the previous section. In this process, 
new variables that were not part of the original dataset 
are created. The complete feature set is included in Table 

1. 
There are three feature categories: historical, 

calendar, and meteorological, as indicated in Table 1. 
Historical features or lag features are created by shifting 
the actual load data for desired timesteps (i.e., Lh-n 
denotes load in the n-th hour before the current hour, h). 
Calendar features include the information of the current 
hour and day filtered from DateTime indices. Cyclical sine 
and cosine features are calculated using the sine and 
cosine functions for the current hour in the day or week. 
Meteorological features include the air temperature in 
the four biggest Croatian cities, Zagreb, Split, Rijeka, and 
Osijek, lagged for 24 hours, as these observed air 
temperature values are available at the time of forecast 
creation. 

Table 1: Feature categorization and description 

Category Name Description 
Measurement 

Unit 

H
is

to
ri

ca
l 

Lh-1 Load value, 1h before MWh/h 
Lh-2 Load value, 2h before MWh/h 
Lh-3 Load value, 3h before MWh/h 
Lh-4 Load value, 4h before MWh/h 
Lh-6 Load value, 6h before MWh/h 
Lh-24 Load value, 24h before MWh/h 
Lh-48 Load value, 48h before MWh/h 
Lh-168 Load value, 168h before MWh/h 

C
a

le
n

d
a

r 

holidayh 
Binary indicator variable,  

"is Holiday?" - 

wdayh 
Categorical variable,  

day of the week (0, 6) day 

hourh Hour of the day h 

sin_hourh 

Cyclical variable, 
hour of the day,  

sine function 
h 

cos_hourh 
Cyclical variable, 
hour of the day,  
cosine function 

h 

sin_weekh 
Cyclical variable, 

hour of the week, 
 sine function 

h 

cos_weekh 
Cyclical variable, 

hour of the week,  
cosine function 

h 

M
et

eo
ro

lo
g

ic
a

l temp_Zgh-24 
Air temperature in Zagreb, 

24h before 
°C 

temp_Sth-24 
Air temperature in Split, 

24h before °C 

temp_Rih-24 
Air temperature in Rijeka, 

24h before °C 

temp_Osh-24 
Air temperature in Osijek, 

24h before °C 
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Features were selected based on the Pearson 
correlation coefficient, measuring the linear correlation 
between each feature and the target load value. ML 
models used in the experimental part mainly share 
presented features, except the lag features which are not 
available at the time of forecast (i.e., lag features  
Lh-1 are not available 24h in advance; as a result, models 
with a 24-hour forecasting horizon include Lh-24 and 
higher). 

2.3 Experimental setup 

The presented research was conducted using 
Python and Jupyter Notebook [11] environment. NumPy 
[12] and Pandas [13] packages were used for time-series 
data analysis, while Seaborn [14] and Matplotlib [15] 
packages were used for generating all visualizations. The 
scikit-learn [16] package was used for implementing 
classic machine learning models and data preprocessing 
functions. Furthermore, the holidays [9] library was used 
to acquire public holiday data, and the Meteostat Python 
API [10] was utilized to acquire weather data. The 
Nonconformist [17] package was used for conformal 
predictions, and the quantile-forest [18] package was 
used for quantile forest regression implementation. 
Supplemental functions for implementing conformalized 
regression, quantile regression, and conformalized 
quantile regression were used from the original 
implementation in [19]. 

Experiments were performed as follows: firstly, the 
datasets described in section 2.1 were loaded, and the 
features were created as outlined in section 2.2. The 
dataset was split into a training set comprising of four 
years of historical data and a test set comprising of one 
year of data. This created the 80-20 ratio for the training-
test split. Furthermore, the training set was further 
divided into two subsets: training and calibration set, in 
the 50-50 ratio. The data was standardized to have zero 
mean and unit variance using the StandardScaler 
preprocessing function, and then the output was scaled 
by its mean absolute value. This ensured the 
exchangeability of the original data (as per the original 
paper) [6]. Training was conducted, with the validation 
or calibration set utilized to optimize hyperparameters. 
The trained models were then tested on the test set with 
the defined evaluation metrics. In the next section, a 
detailed description of the models that have been used 
and compared in this research is provided. 

2.4 Model description 

 As a baseline or persistence model, ridge 
regression, which is a linear regression model with l2-

norm regularization, was utilized. The regularization 
parameter is tuned via cross-validation. Ridge model 
implementation is used from the scikit-learn [16] 
package. Random forest regression is used as the 
underlying model for implementing several classic 
models: 

• split conformal regression,  

• local conformal regression,  

• quantile regression, 
and the proposed conformalized-quantile 

regression. All analyzed methods, except for classic 
quantile regression, require a calibration set for held-out 
validation. In this case, the training procedure for classic 
quantile regression is performed on the entire training 
set. 

Random Forest (RF) is a bootstrapping-based 
ensemble method based on decision trees. It is a 
commonly used supervised machine learning technique 
for classification and regression tasks because of its 
predictive accuracy and ability to avoid and prevent over-
fitting. Neural networks are widely used models in 
literature. However, they require longer training time 
and larger datasets and often encounter the quantile 
crossing problem in quantile regression tasks. On the 
other hand, random forest algorithms are not affected 
by the quantile crossing problem. Quantile crossing 
occurs when two separate quantile regressions estimate 
a lower and an upper quantile, and there is no guarantee 
that the lower estimate will be smaller than the upper 
estimate. 

Split conformal prediction is a regression technique 
that predicts the conditional mean by first dividing the 
training data into two subsets: training and calibration 
set. The calibration set is then used to compute the 
absolute residuals, which are used to calculate the 
quantile of the empirical distribution. However, a 
drawback of this method is that the prediction intervals 
are fixed in length and do not vary based on the query 
point. 

A locally adaptive variant of conformal prediction 
uses scaled residuals instead of absolute residuals to 
calculate the quantile of the empirical distribution. 
Scaling is performed by dividing residuals with a measure 
of residual dispersion, and the problem is that it 
underestimates prediction errors since it uses residuals 
on training data. Prediction intervals are, as a result, less 
adaptive and longer.  

Both split and local conformal regression 
implementations are from the Nonconformist [17] 
package, using the scikit-learn [16] Random Forest 
regression as the underlying model. 
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Quantile regression is a method that estimates the 
conditional quantile function of output values. By 
minimizing the pinball loss function, it provides adaptive 
prediction intervals. The prediction intervals are formed 
by fitting the conditional quantile function at the lower 
and upper percentage levels, creating corresponding 
intervals. Most ML algorithms can be integrated with QR. 
The Quantile Random Forest (QRF) model is 
implemented in the quantile_forest [18] package. 

Conformalized Quantile Regression (CQR) inherits 
the best of both worlds: validity of prediction intervals 
from conformal prediction techniques and the statistical 
efficiency from quantile regression in terms of intervals 
adaptive to the local variability of provided samples. CQR 
is flexible and can be used with most algorithms, 
inheriting the strengths of QR. However, the key 
advantage that the CQR method offers is a rigorous 
control of the miscoverage rate, irrespective of the 
underlying regression algorithm, enhancing confidence 
in the validity of the results. This is a particularly valuable 
characteristic in applications where precision and 
accuracy are required, enhancing confidence in the 
validity of the results. CQR implementation used in this 
research is from the original paper [6] and CQR 
repository [19]. 

When referring to classic methods in this paper, it 
means split and local conformal prediction, as well as 
quantile regression methods. Classic methods are 
compared to Conformalized Quantile Regression method 
using the same underlying algorithm: Random Forest 
regression. The goal is to achieve 90% nominal coverage, 
and the corresponding levels to fit the conditional 
quantile functions are at 5% and 95%. To have a fair 
comparison, hyperparameters of CQR are identical to 
classic methods. Further details about hyperparameters 
and comparisons are disclosed in the following chapter.  

2.5 Evaluation metrics 

In this paper, the accuracy of the constructed 
prediction intervals (PIs) is evaluated using two 
conformal scores: the prediction interval coverage 
probability (PICP), defined with Equation  (1) and the 
mean prediction interval width (MPIW), defined with 
Equation (2). PICP indicates the extent to which the PIs 
cover the target values in the test dataset, or in other 
words, the proportion of test data values that fall within 
the calculated PIs. On the other hand, MPIW provides 
information about the length of the PIs and measures the 
average absolute difference between the estimated 
lower and upper bounds of the target values. 

 

PICP can be defined as: 

𝑃𝐼𝐶𝑃 =  
∑ 𝑘𝑖

𝑛
𝑖 = 1

𝑛
, (1) 

MPIW is expressed as: 

𝑀𝑃𝐼𝑊 =
1

𝑛
∑(𝑦𝑢�̂� − 𝑦𝑙�̂�)

𝑛

𝑖=1

, (2) 

where n represents the test set length, vector k 
represents an indication of whether the test set 
observation is or is not covered by the constructed PI:  

𝑘 =  {
1, 𝑖𝑓 𝑦𝑖 ∈ [𝑦𝑙�̂�, 𝑦𝑢�̂�] 

0, 𝑖𝑓 𝑦𝑖 ∉ [𝑦𝑙�̂�, 𝑦𝑢�̂�]
, (3) 

yi is i-th observation in the test set, and yli and yui, 
respectively, represent lower and upper bounds of the  
i-th PI. 

PICP is expressed as a coverage percentage, while 
MPIW is calculated on scaled load values without a 
measurement unit. 

3. CASE STUDIES 
This chapter provides descriptions of the analyzed 

cases for two forecasting horizons: one hour ahead and 
one day ahead (24 hours). Real-time system operation 
procedures typically apply one-hour-ahead (or lower, 
i.e., 15-min-ahead) load forecasts, while one-day-ahead 
load forecasts are utilized for system operational 
planning tasks.  

For each forecasting horizon, all the previously 
mentioned methods are calculated. The results are then 
compared based on defined evaluation metrics and 
model-building time, which includes the time employed 
for model training and calibration (where applied). To 
ensure credible results, the experiment is conducted 
using ten random training-calibration splits for each 
forecasting horizon and method. In every experiment, a 
random seed is generated to shuffle the training set and 
set the random state parameter in the RF regression 
model. Table 2 provides a list of hyperparameter values 
used. Hyperparameters are the same for both horizons 
and all methods using the RF as an underlying algorithm.  

For the one-hour-ahead models, historical and 
calendar features are exclusively used. This is because 
recent lag features, such as load value one hour prior, 
can better predict the output value. However, for the 
one-day-ahead models, meteorological features are also 
included, along with historical and calendar features. 
Additionally, these models only consider lag features 
available for more than 24 hours ahead. 
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Table 2: List of hyperparameter values 

Hyperparameter Value 

n_estimators 500 
min_samples_leaf 50 

max_features X_train.shape[1] 
significance 0.9 

lower quantile level 0.05 
upper quantile level 0.95 

 
4. RESULTS & DISCUSSION 

This chapter presents the results obtained from 
experiments. Figure 2 and Figure 3 present the results of 
all analyzed methods for one-hour-ahead and one-day-
ahead forecasting horizons, respectively, based on ten 
different training-calibration splits. The left plot 
illustrates the PICP metric, representing the average PI 
coverage achieved by each method across ten 
calculations. The desired expected coverage was set at 
90% (defined with a black dashed line on the left, PICP 
plot). The right plot indicates the MPIW, the scaled 
average PI length. Ideally, PICP mean values (middle line 
on the boxplot) should be over the expected 90% value, 
and the mean MPIW values should be as low as possible, 
indicating shorter or more narrow PIs. 

Figure 2: PICP and MPIW for one-hour ahead forecasting 
horizon, comparing different methods 

 

Figure 3: PICP and MPIW for one-day ahead forecasting 
horizon, comparing different methods 

 

When observing the aggregate results from ten 
different training-calibration splits on models with one-
hour-ahead forecasting horizons in Figure 2, it is 
observable that all analyzed algorithms achieved over 
the expected 90% coverage, which is visible in all mean 
values denoted on boxplots. The QRF method yields a 
mean PICP of 96.963% with the longest PIs, indicating an 
overly conservative approach to prediction. The Linear 
(Ridge) model serves as a baseline to compare with more 
complex RF-based models for improved results. This can 
be observed by examining the mean coverage over 90% 
(91.062) and relatively short PIs (mean MPIW is 0.089). 
The Ridge model performs even better than the QRF 
model for this forecasting period. It is noticeable that the 
locally adaptive version of CRF performs better than the 
standard or split version of CRF. The coverage is almost 
the same, but the PIs are shorter. The proposed CQR RF 
method displays the best results, covering the expected 
90% significance level (with mean PICP value of 90.171) 
and the lowest MPIW value (0.084), representing the 
narrowest PIs. 

Regarding Figure 3, which represents the combined 
outcomes of models with a one-day-ahead forecasting 
period, it should be noted that the CQR RF model has a 
mean PICP value of 89.821, which is slightly below the 
anticipated 90% coverage. Nevertheless, it has the 
shortest PIs among all the models. Compared to the 
other classic conformal methods, RF and the locally 
adaptive RF version deliver similar results, slightly below 
the expected 90% coverage. The locally adaptive version 
outperforms the standard CRF, while the QRF is too 
conservative, with a mean PICP of 93.971. The linear 
(Ridge) model exceeds the desired 90% coverage with 
too long PIs. Although CQR RF did not achieve the desired 
significance level of 90%, it outperformed other 
methods. However, further fine-tuning of the 
parameters and cross-validation may help achieve the 
desired significance level. It is important to note that the 
study's goal was not to find the absolute best CQR RF 
model but rather to compare different methods. 

Figure 4 shows the summarized results for the one-
hour-ahead forecasting horizon. It illustrates the output 
values from the test dataset, which consists of one-year 
load data in the form of a box-whisker plot filtered by the 
hour of the day denoted on the x-axis. The box-whisker 
plot shows the mean values in each hour and the 
variability on the test set. The orange lines represent the 
original PIs aggregated on an hour basis, calculated with 
the classic split conformal RF method, and the blue lines 
represent the conformalized, locally adaptive PIs 
calculated with the proposed CQR RF method. The 
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original PIs, shown in orange, are the same length for all 
the hours in the day, covering 90% PIs, and the 
conformalized PIs are adaptive to values in that 
particular hour. In the early hours (from h1 to h7), where 
the load is lower and has lower variability, the 
conformalized PIs are shorter in length than the original 
PIs. From h7, conformalized PIs start to be longer than 
the original PIs, with higher differences in length during 
the second valley and the second peek hours (from h18 
to h23), which also exhibit high variability (observable in 
longer boxes). These differences in the length of the 
original and conformalized PIs not only justify using the 
CQR RF for the STLF task but also exhibit the strength of 
the proposed method in terms of recognizing the load 
uncertainty and variability, which is beneficial in both the 
planning and operation processes. 

  
Figure 4: Original vs. conformalized PIs for test dataset, 

hourly distributions for one-hour ahead forecasting horizon 

Table 3: Summarized numerical results 

Forecasting 
horizon 

1h 24h 

 Method 
PICP  
[-] 

MPIW  
[-] 

Training 
time [s] 

PICP 
[-] 

MPIW 
[-] 

Training  
time [s] 

C
la

ss
ic

 m
et

h
o

d
s 

Ridge 91.0674 0.0890 0.0201 90.3083 0.1644 0.0292 

RF 90.4578 0.0870 5.7671 89.8961 0.1318 7.3429 

RF-L 90.4578 0.0864 37.3149 89.8710 0.1307 51.9612 

QRF 96.9635 0.0979 14.6583 93.9712 0.1376 17.8889 

C
Q

R
 

CQR RF 90.0811 0.0842 21.5642 89.8070 0.1289 21.7158 

 

Table 3 serves as a numerical summary of the 
experimental results. All the classic and proposed CQR 
methods are compared over two forecasting horizons 
using the two conformal scores (PICP and MPIW) and the 
training time in seconds, which includes both training 
and the held-out validation where applicable. PICP and 
MPIW results are discussed in previous paragraphs. 

Training time for both forecasting horizons is the lowest 
for the linear ridge model due to its simplicity. The locally 
conformalized RF method exhibits the highest training 
time. The CQR RF method shows significant 
improvement in terms of lower training time when 
compared to locally conformalized RF but slightly higher 
training time than QRF. The standard RF is relatively fast 
in the model-building phase. 

5. CONCLUSION 
This paper presents a novel approach to short-term 

probabilistic load forecasting. Specifically, we propose 
the use of conformalized quantile regression with 
random forest as the underlying algorithm. Through this 
method, we aim to achieve more informative, variable-
length PIs to model the variability in load values. By 
leveraging the strengths of conformal prediction and 
quantile regression, we have shown that our proposed 
method provides superior results to classic methods, 
comparing it over two short-term forecasting horizons. 
Two standard conformal scoring methods were utilized 
in the defined case study: PICP, which measures PI 
coverage, and MPIW, which measures the PI length. The 
CQR method demonstrates the best results with the 
narrowest PIs, covering the expected significance levels 
of 90% and exhibiting improvement in terms of model-
building time when compared to other locally-adaptive 
methods. The CQR method effectively addresses load 
uncertainty and variability, making it essential for real-
time system operation and day-ahead planning. The 
significance of our findings lies in the potential for our 
method to improve both system operation and 
operational planning processes, leading to more efficient 
and sustainable power system operation. 
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