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ABSTRACT 
  Physicochemical properties of synthetic fuels are 

important but difficult to measure/predict, especially 
when complex surrogate fuels are concerned. In the 
present work, machine learning (ML) models are 
constructed to discover intrinsic chemical structure-
properties relationships. The models are trained using 
data from molecular dynamics (MD) simulations. The 
fuel structure is represented by molecular descriptors. 
Such a symbolic representation of the fuel molecule 
allows to link important features of the fuel composition 
with key properties of fuel utilization. The results show 
that the present approach can predict accurately the fuel 
properties of a wide range of pressure and temperature 
conditions. 
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1. INTRODUCTION 
Fossil fuels still play a key role in energy supply, 

especially in difficult-to-decarbonize transport 
applications such as shipping, road freight, and aviation 
transport. Overall, they are responsible to emit more 
than 50% CO2 of the entire transport sector [1]. With the 
need to take a step towards net zero emissions and 
sustainable energy utilization, renewable fuels including 
biofuels are becoming increasingly important. Among 
efforts on developing low-emission fuels, liquid synthetic 
fuels like Oxymethylene Dimethyl Ethers (OMEx) have 
shown high potential for low-carbon transport 
applications, since they can be integrated into the 
current transportation system using existing 
infrastructure and be burned in existing engines (such as 
diesel engines for optimal fuel economy) with minor 
adjustments as drop-in fuels [2,3]. 

For the rapid integration of synthetic fuels into 
current infrastructures for storage, transport, and direct 
injection in combustion engines the physicochemical 
properties associated with fuel composition must be 
known. This represents a significant challenge since 
synthetic fuels are often composed of complex mixtures 
and the physicochemical properties depend on fuel 
composition variability linked with production source 
and process. To address this challenge, accurate 
information on the physicochemical properties of 
complex mixtures over the engine operational ranges is 
mandatory to adapt the system operation to alternative 
fuels, but this is not readily available. 

In order to pursue this goal, MD simulations have 
been used to predict the physicochemical properties of 
practical fuels including transport properties at 
supercritical conditions [4]. However, MD simulations 
are generally expensive in terms of computational costs 
(CPU time and memory). Hence, although those 
simulations provide molecular details that can be 
potentially used to accurately predict fuel properties, it 
is not feasible to establish complete and detailed fuel 
property databases using MD simulations.  

Recently, machine-learning models have gained 
attention to predict physicochemical properties from 
molecular structures [5]. Also, ML can be a powerful tool 
to predict the physicochemical properties of fuels from 
the chemical structures [6,7,8]. Freitas et al [9] proposed 
a methodology to explore the thermodynamic properties 
of practical fuels by combining MD simulations and ML 
models. The results show that ML models can yield 
accurate predictions of fundamental fuel properties from 
the chemical compositions of the fuels by using 
databases from MD simulations. 

The present work aims to characterize the 
physicochemical properties of synthetic fuels 
dependence on thermodynamic state variables 
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(temperature and pressure) and fuel chemical 
composition/structure using machine learning 
techniques to leverage data obtained through MD 
computations and/or experiments. Here, the chemical 
structure of such complex fuels may be described using 
chemical descriptors [7,10]. Descriptors allow us to 
correlate the chemical structure of the fuels with 
thermophysical properties. Such an approach allows an 
understanding of the underlying physics which links the 
chemical structure with the physical properties, as well 
as helps to design novel blends. 

2. METHODOLOGY  
In this section, we briefly introduced the AI-assisted 

liquid synthetic fuel design methodology that can 
potentially lead to fully sustainable combustion, i.e., the 
engines are 100% powered by sustainable/renewable 
synthetic fuels. Figure 1 shows an overview of the 
present methodology, whose further details are given 
ahead. 

2.1 Molecular Descriptors 

A molecular descriptor is a mathematical 
characterization of a chemical structure. The main idea is 
transforming chemical information embedded within a 
symbolic representation of a molecule to a set of 
features useful to represent the chemical composition 
[10]. Such a description may be used to connect 
important features of the fuel composition with key 
properties of fuel utilization, so allowing a step toward 
the development of interpretable machine-learning 
models. Going further, revealing the dependence of 
physicochemical properties of liquid synthetic fuels on 
fuel mixture chemical composition/chemical structure 
may lead to new information about the property, and 
provide a better understanding of the underlying physics 

of the relation between physicochemical properties and 
molecular structure. 

2.2 Building machine learning models 

In this section, we present a brief description of ML 
models for a generic property 𝛾 function of the chemical 
structure/composition and state variables, pressure (𝑃) 
and temperature (𝑇). In particular, the aim is to learn a 
mapping 𝑓 characterizing the macroscopic 
thermodynamic relation between the physicochemical 
property and the chemical structure: 

𝛾 = 𝑓(𝚽,𝑃, 𝑇, 𝝃).         (1) 
Here, 𝑓 is a nonlinear map that acts as a surrogate model 
for the costly MD simulation. 𝚽 is the vector of molecular 
descriptors that characterize the chemical structure of 
fuel. The vector 𝝃 denotes potential noise and is often 
considered a random. 

In the present study, we use a simple fully 
connected neural network (FCNN) to discover the 
relationship. between chemical structure and properties. 
Neural networks (NNs) are universal function 
approximators that can detect and decode intrinsic 
relations from data. NN models have been shown to be 
an effective tool for accurately predicting several 
physicochemical properties [11,12]. Also, such models 
are simple to implement with several end-to-end open-
source machine learning platforms available. 

A Theory section should extend, not repeat, the 
background to the article already dealt with in the 
Introduction and lay the foundation for further work. In 
contrast, a ‘Calculation’ section represents a practical 
development from a theoretical basis.  

3. RESULTS AND DISCUSSION 

In the present section, we demonstrate the 
performance of the proposed methodology. Here, we 

 
Fig. 1. Overview of AI-assisted liquid synthetic fuel design methodology 
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consider single-component alkanes CnH2n+2, so reliable 
data for model assessment and validation can be used. 
The compounds considered are n-octane, n-nonane, n-
decane, n-dodecane, and n-hexadecane. The dataset 
used to build the ML models consists of 1200 density 
values. In particular, 240 values of the density for each 
compound are considered, computed at a regular 

temperature grid within 𝑇 ∈ [320, 900] K, varying by 20 
K, and at the specific pressure values: 𝑃 = {3, 4, 6, 8, 10, 
20, 100, 150} MPa. 

Here, the molecular descriptors are computed using 
Mordred software [10]. Mordred is an open-source 
library that can generate more than 1800 descriptors. 
Without loss of generality, we use just the number of 
carbon and molecular weight as input descriptors for the 
ML model. However, a feature selection technique can 
be used to identify important features with meaningful 
property relationships in the data [7]. Also, a simple one-
hidden layer FCNN with 16 neurons is constructed for 
mapping the fuel composition to the property. The 
model is trained for 300 epochs using the Adam 

optimizer with a learning rate of 10−4 . The proposed 
model was implemented in PyTorch [13], and 
computations were performed in single precision 
arithmetic on a single NVIDIA GeForce RTX 2060 GPU 
card. 

In the training process, 80% of the data points are 
selected randomly to train the ML models. The remaining 
20% is used to test. Figure 2 shows the parity plots 
between the predicted densities by the ML model and 
computed by MD simulations for the test dataset. As we 
can see the ML model returns excellent predictions with 
a coefficient of determination (R2-score) very near 1.0. 

 

 
Fig. 2. Parity plots showing test set and predicted values of 

density 
 

As a further illustration of the performance of such 
approaches to predict the density, we validate how the 
proposed ML technology performs in an extrapolation 

scenario. We validate them for the n-heptane, a fuel not 
used for building the models. To pursue this goal, instead 
of employing data provided by MD computations, we use 
an experimental database furnished by the National 
Institute of Standards and Technology (NIST). Figure 3 
shows that the ML model can predict satisfactorily well 
the density at different pressures. However, at the 
lowest pressure at supercritical conditions (𝑇𝑐 = 540.13 
K), where abrupt decay of the density occurs, the ML 
model returns density predictions far from satisfactory. 
This might be partially solved by adding more data at the 
supercritical region during the training process. 

 

 
Fig. 3. n-Heptane predictions with the machine learning 

model at the pressures 3, 10, and 100 MPa. MD simulations 
(black points) and ML model (red points). 

4. CONCLUSIONS 
In this work, we propose a computational 

methodology based on the use of ML with Molecular 
Dynamics simulations to the mapping between the fuel 
composition and key properties of fuel utilization. The 
ML model has been demonstrated to be a powerful tool 
to reveal the dependence of physicochemical properties 
of liquid synthetic fuels on fuel mixture chemical 
composition / chemical structure. Furthermore, such a 
methodology allows the design of novel liquid synthetic 
fuel blends that can potentially lead to fully sustainable 
combustion. 

The present work shows a successful prediction of fuel 

density guided by the chemical structure, that can also be 

extended to other physicochemical properties as well as more 

complex fuel molecules or multicomponent mixtures like 

dimethyl ethers or OMEx. The generation of reliable 

physicochemical properties of renewable fuels is an important 

step forward towards the generation of digital tools that can 

assist on the decarbonization using renewable fuels. 
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