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ABSTRACT 
 The working condition data of lithium-ion battery can 

vary significantly due to factors such as battery type, 
production processes, and usage conditions. These data 
differences pose a challenge to accurately predicting the 
state of charge (SOC) , leading to various scenarios where 
the model exhibits low training accuracy, high training 
accuracy and low prediction accuracy, and so on. To 
investigate the impact of data differences on the training 
results, it is crucial to study the influence of distribution 
diversity of large-scale data on the generalization of the 
prediction model of SOC. Therefore, 32 operational data 
sets of actual lithium batteries were studied in this paper. 
Considering the demand of advanced battery 
management technology, random forest (RF) was 
combined with MIMO strategy to predict multi-step SOC, 
and prediction models were established for 32 
operational data sets respectively. The application effect 
of RF is studied and the effect of data set properties on 
multi-step prediction model of SOC is analyzed. The 
results indicate that, for large-scale lithium-ion battery 
data, excluding a small amount of data, the RF-MIMO 
model achieves an R2 training accuracy of approximately 
0.95 or higher for predicting future SOC with a time step 
of 180 intervals. The median R2 accuracy of each model 
to predict other data sets remains about 0.9. When the 
dataset meets the requirements of a wide distribution 
range of SOC, a left-skewed tendency in the kernel 
density curve, and a relatively uniform distribution, the 
model training can obtain high precision. 
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NONMENCLATURE 

Abbreviations  
 SOC 
 RF 
 MIMO 

State of Charge 
Random forest 
Multi-input Multi-output 

Symbols  

Φk the battery parameters at time k 

k Time 
GD Gini index  
hk the decision tree 

1. INTRODUCTION 
Lithium-ion batteries are widely used as energy 

storage devices for electric vehicles due to their high 
energy density and low self-discharge rate [1][2]. In order 
to ensure the safe and stable operation of lithium-ion 
batteries, an efficient and intelligent battery 
management system is particularly important, and the 
state of charge estimation of batteries is one of the key 
technologies. SOC is generally defined as the ratio of 
available capacity to reference capacity [3-5]. Accurate 
SOC estimation can prevent the battery from 
overcharging and discharging and extend the service life 
of the battery. SOC cannot be measured directly [6] and is 
often estimated indirectly based on voltage, current, 
temperature and other data. SOC estimation methods 
can be divided into traditional estimation methods, 
model-based estimation methods and data-driven 
estimation methods [7]. Among them, the data-driven 
method is to map the relationship between SOC and 
voltage, current, temperature, etc. directly into the data-
driven model based on measurement data, which is 
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simple to establish and can be combined with cloud data 
in the future, and has potential in SOC estimation [8-10]. 

At present, most studies using data-driven method 
to predict the state of charge are conducted on individual 
working condition data of the same type or different 
types of lithium batteries. However, different types of 
lithium batteries will lead to great differences in battery 
working condition data due to differences in chemical 
composition, charge and discharge performance, cycle 
life, etc. Even for the same type of lithium batteries, the 
data of battery working condition will be different due to 
different production processes, aging conditions and 
user habits. The difference in data significantly increases 
the difficulty of accurate prediction of the state of 
charge, resulting in low training accuracy, high training 
accuracy and low prediction accuracy of the model and 
so on. In order to explore how data differences affect the 
training results of the model, etc., It is necessary to study 
the impact of the distribution diversity of large-scale data 
on the generalization of charge state prediction model. 

Therefore, this paper studied the actual operation 
data of multiple lithium batteries and established models 
respectively for SOC prediction. Considering the demand 
of advanced battery management technology, random 
forest algorithm was combined with multi-input, multi-
output and multi-step prediction strategy to predict SOC 
in the future period and the application effect is studied. 
On this basis, the influence of data set distribution on the 
multi-step SOC prediction model is analyzed, which 
provides a reference for how to select data sets for SOC 
prediction in actual working conditions in the future. 

 
2. THEORY AND METHOD  

2.1  Research approach  

   The main framework of the study consists of four 
parts. First, 32 actual data sets of lithium battery packs 
were collected under different temperatures, different 
driving speeds and different usage habits and so on. We 
selected the total voltage, total current, SOC and 

temperature of the battery pack as features, pre-
processed the data, and then input it into the multi-step 
prediction model of SOC with optimal parameters, 
respectively trained each data and predicted other data 
sets besides itself. Finally, the training and prediction 
results of each method are counted, and the influence of 
distribution diversity on model generalization is analyzed 
from the perspective of feature distribution. The analysis 
results are helpful to evaluate whether the lithium 
battery data set is conducive to training the prediction 
model of SOC. 

2.2  multi-step prediction method of SOC  

The SOC at time k is a function of the battery 
parameters, which can be expressed by formula (1), 
where Φk represents the battery parameters at time k, 
and k=1,2,... tE. tE stands for last moment. In order to 
perform SOC estimation of time series, obviously, it is 
necessary to determine the range of input time tw, that 
is, the input step length. SOC can be expressed as 

formula (2), where k≥tw>0. If multi-time estimation is 
required and the output step length is more than one 
moment, SOC can be expressed by formula (3). Multi-
input Multi-output (MIMO) strategy is to establish a 
multi-output model to predict the multi-step SOC value 
at one time, which not only takes advantage of the 
correlation of the input multi-time battery parameters, 
but also considers the correlation of the output multi-
time SOC, effectively reducing the accumulation of 
errors. The general schematic diagram is shown in Figure 
1. 

 

 

 
Figure 1 Schematic diagram of the method 

 SOCk=f(φk,φk-1,...φ1) (1) 

 SOCk=f(φk,φk-1,...φk-tw+1) (2) 

 (SOCk,SOCk+1...SOCk+h)=f(φk,φk-1,...φk-tw+1) (3) 
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2.3  Random forest algorithm 

Random forest is an integrated learning algorithm 
based on decision tree, which adds the idea of bagging 
and random subspace to solve the problem of low 
accuracy and easy overfitting of decision tree model [11-

13]. Random forest adopts bootstrap technology to form 
a self-service sample set from random samples returned 
from the data, and builds decision trees according to 
CART algorithm [14]. Each tree has root nodes, 
intermediate nodes and leaf nodes, as shown in the 
figure. The attribute selection measure of CART 
algorithm is Gini index. Assuming data set D contains m 
categories, the calculation formula of Gini index GD is as 
follows: 

 Where, pj is the frequency of occurrence of class j 
elements. 

For each attribute, consider every possible binary 
partition, select the subset of the smallest Gini index 
generated by the attribute as its split subset, and under 
this rule, split continuously from top to bottom until the 
decision tree is generated, and finally take the average of 
the results of each tree as the predicted value, that is 

Where hk represents the decision tree and K is the 
number of trees. 
3.  PREDICTION PROCESS  

3.1  Data sources and preprocessing 

The data in this paper come from the historical data 
of the actual operation of a shared electric bicycle. The 
electric bicycle battery pack consists of 14 battery cells in 
series, and its basic parameters are shown in Table 1. A 
total of 32 operating condition data sets are collected, 
which contain sensing information such as battery 
temperature, total voltage of battery pack, voltage of 
battery unit, battery capacity, actual SOC, etc. The 
operating state of the battery reflects charge and 
discharge through positive and negative current. 

Table 1 Main parameters of lithium-ion batteries 

Main parameters of lithium-ion battery 

Number of cells 14 
Connection mode series 
Nominal voltage(V) 58 
Nominal capacity(Ah) 32 

Charging mode CC-CV 
Cooling method passive air cooling 
Heating method none 

Each dataset is sampled at a interval of 10 seconds, 
denoted as a time step. In this paper, battery 
temperature, total voltage of battery pack, current and 
actual SOC are selected as characteristics for analysis. 

According to statistics, the total number of missing 
values in each data set accounts for a small proportion of 
the total data set, so a simple linear interpolation 
method is used to fill the missing values in the data set, 
and the outliers are filtered by the quartile range rule. 
Data standardization[15] is mainly to conduct 
standardized data processing. In this paper, Min-Max 
method is used for data standardization: 

Where x is the initial data, xmax and xmin respectively 
represent maximum the and minimum values in the 
data, and xscale is the result of data standardization. 

3.2  Model training and optimization 

The pre-processed battery data set was divided into 
a training set and a test set according to the ratio of 8:2, 
and the multi-step prediction model was trained using 
the training set. In order to reduce the accumulation of 
errors, a small amount of battery information is used to 
predict the SOC for a long period of time, and the input 
step is set to 10 and the output step is set to 180. On this 
basis, multiple data sets of actual working conditions are 
used to optimize the model hyperparameters by grid 
search method. 

3.3 Model Evaluation  

The evaluation indexes used are Mean Absolute 
Percentage Error (MAPE) and goodness of fit R². The 
mean absolute percentage error can be expressed as: 

Where yi
‘represents the i th predicted value, yi 

represents the i th true value, and n represents the 
number of samples. 

Goodness of fit represents the fitting effect between 
the predicted value and the true value of the model, 
namely: 
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Generally speaking, the smaller the MAPE, the 
smaller the model prediction error and the higher the 
accuracy; The closer R² is to 1, the better the model fits 
and the higher the accuracy. 

 
4. RESULTS 

4.1 Training performance of the model 

The training results of 32 data sets of RF model 
combined with MIMO strategy are shown in Figure 2. The 
R2 of many data sets is above 0.95, indicating that this 
method can accurately predict multi-step SOC.  

The accuracy of some data sets in the model is also 
very low, which may be affected by the data distribution. 
In terms of MAPE index, the RF-MIMO model’s errors are 
basically below 0.05.  

Figure 2 Training results of the model 

4.2 Predictive performance of the model 

In order to comprehensively observe the SOC multi-
step prediction effect of each data set and facilitate 

analysis, all R2 results of training and prediction of each 

Figure 3 Prediction results of the model 

data set were drawn into heat maps, as shown in 
Figure 3. According to the figure, the results of RF-MIMO 
model are basically above 0.8. In general, accuracy 
results above 0.9 account for 1/2 of all prediction results. 
For some datasets, R2 is even below 0.3, indicating that 
the current model has poor generalization in these data 
sets. 

4.3 Influence of data distribution properties on model  

According to the results in Figure 3, data sets with 
high and low training accuracy are found for research 
according to the indexes with R2 greater than 0.90 and R2 
less than 0.55. 

Considering the influence of SOC distribution on 
model training, kernel density curve was used to explore 
SOC distribution of common data sets with high and low 
training accuracy.  

Figure 4(a) SOC distribution of common data sets with 
high training accuracy

 
Figure 4(b) SOC distribution of common data sets with 

low training accuracy 

Figure 4 shows the distribution of common data sets 
SOC with high and low training accuracy. The SOC core 
density curve of data sets with high training accuracy has 
a high density when SOC is 95-100, while the density of 
other intervals is about 0.01, showing a left-leaning trend 
and an overall uniform distribution. However, the SOC 
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distribution range of data sets with low training accuracy 
is narrower, and the kernel density is very large in some 
locations, exceeding 0.1, and the overall is not uniform.  
5. RESULTS 

Studying the impact of the distribution diversity of 
large-scale data on model generalization is helpful to 
evaluate whether the lithium battery data set is 
conducive to training SOC prediction models. In this 
paper, the random forest and MIMO strategy are 
combined to predict multi-step SOC and we built models 
respectively for SOC prediction based on 32 actual data 
of lithium batteries. 

The output step length is 180, that is, the prediction 
time is half an hour. The application effect of the 
algorithm is studied and the influence of data 
distribution on the multi-step SOC prediction model is 
explored. Specific conclusions are as follows: 

(1) RF-MIMO model training accuracy R2 is mostly 
above 0.95, MAPE is mostly below 0.05, so the model can 
accurately predict SOC; 

(2) RF-MIMO model has excellent prediction 
performance when predicting data sets other than its 
own, and the median R2 result is basically above 0.9; 

(3) When the data set meets the following 
requirements, the model can be trained with high 
precision: 

The SOC distribution range is wide, and the nuclear 
density curve tends to be left, and the overall distribution 
is uniform. 
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