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ABSTRACT 
The construction of energy system digital twin relies 

on accurate models. This paper proposes a new modeling 
method for natural gas station hydraulic systems by 
integrating physical models and data-driven models to 
improve the accuracy of models. Taking a natural gas 
station of long-distance gas pipeline as an example, this 
paper builds the physical model of a station, including 
compressors and regulating valves. Then a hydraulic 
calculation algorithm of the station is developed. A data-
driven model Back Propagation Neural Network (BPNN) 
is introduced for physical model error compensation. 
Finally, the calculation results show that the hybrid 
model has better accuracy than the physical model and 
the energy consumption of key equipment, such as 
compressors, air coolers in the station is monitored. 
Moreover, the hybrid model better integrates the 
advantages of the two types of models, it can serve as a 
soft sensor to enrich the status monitoring data of 
station equipment and lay the foundation for further 
optimization of station energy consumption. 
 
Keywords: energy consumption monitor, natural gas 
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Nonmenclature 

Abbreviations  
 BPNN  
 DT 

Back Propagation Neural Network  
Digital Twin 

Symbols  

 H 
Z 
R  
𝜀  

polytropic head 
gas compressibility factor 
specific gas constant 
pressure ratio 

  𝑇1 
  𝑇2 
  𝑃1 
  𝑃2 

Q 
N 
Cv  

suction temperature 
discharge temperature 
suction pressure 
discharge pressure 
flow rate 
speed 
flow coefficient 

 

1. INTRODUCTION 
The rise of Digital Twin(DT) technology is due to the 

rapid development of the cyber-physical systems. 
Applying DT in the design stage is not only optimizing the 
design processes but also be beneficial to upcoming 
events, such as manufacturing planning, product health 
monitoring. 

Physical model is the foundation of digital twin. As 
for natural gas pipeline transmission, the pressure of the 
gas is reduced mainly due to friction with the wall of the 
pipe and heat transfer between the gas and the 
surroundings. Compressor stations are usually installed 
to boost the pressure of the gas. In the station, the gas is 
filtered and metered, and then part of gas is transported 
to the next station after pressurized through 
compressors, and the other part is distributed to city 
gate stations. 

 
Fig. 1 Schematic diagram of the gas station 
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Several investigators tried to simulate unsteady 
condition for pipeline and some of them focused in 
compressor station modeling. 

Botros et al. [1] presented a dynamic compressor 
station simulation that consists of nonlinear partial 
differential equations describing the pipe flow together 
with nonlinear algebraic equations describing the quasi-
steady flow through various valves, constrictions, and 
compressors. Compressor is the key equipment in 
stations, and optimized control can greatly reduce 
energy consumption. Bryant [3] simulates The Florida 
Gas Transmission (FGT) model, almost all possible 
operational scenarios within each compressor station. 
Station control has the ability to try and meet multiple 
setpoints; and, the ability for units to automatically come 
on-line and off-line. Lei Zhang [4] modeled the natural 
gas compressing system based on a combined approach 
that the flow in the pipe was simulated using a finite 
volume method with a high order upwind scheme 
considering the real-gas behaviors and the behaviors of 
elements.  

Several works focus on compressor maps. Schultz [5] 
derived the real-gas equations of polytropic analysis and 
to show their application centrifugal compressor testing 
and design.  

The dynamic behavior of the gas flow within a 
compressor station is described by nonlinear partial 
differential equations. However, the physical model does 
not take into account unmodeled factors such as noise, 
equipment aging, and dirt, resulting in a decrease in 
accuracy over time. In addition, the physical model is 
slow in computation and cannot meet the real-time 
requirements of online simulation. Recent advances in 
computational power and exponential growth of data 
availability have made data-driven modeling more viable 
and popular.  

On the other hand, data-driven approaches such as 
machine learning techniques could effectively deal with 
the modeling challenges when it is hard to construct the 
mechanism-based model. Black-box data driven 
modeling can obviously improve the speed of modeling, 
decrease the computational burden, and contribute to 
constructing lightweight models to describe the 
relationship between physical variables. For example, 
Gaochen Cui[6] proposed a data-driven framework, and 
used neural network to estimate hyper parameter of 
pipe, which improves the accuracy of the calculated 
results effectively. Hamid Asgari[7] developed nonlinear 
autoregressive exogenous (NARX) models of a heavy-
duty single-shaft gas turbine (GT) during start-up 

operation. Xie H [8]used NARX neural network to predict 
CO2 compressor vibration performance. 

However, the construction of data-driven models 
highly correlates with the samples of known variables, 
which scarcely contributes to the understanding of the 
inner logic of model construction. Combining physics-
based and data-driven modeling is a relatively new field 
of research. Hybrid models have developed in many 
industries, such as manufacturing, autonomous driving 
and electricity. However, there is few works in natural 
gas transmission. 

 
2. METHOD  

2.1 Digital twin framework 

The digital twin is divided into four layers, based on 
the device layer, which collects device data through the 
Internet of Things and sends it to the data center. The 
second layer is the data layer, where the raw data is 
classified and stored in different data pools, and the data 
is integrated and transformed into a unified storage 
format that is easy to analyze for storage in each data 
pool. The third layer is the model and algorithm layer, 
this layer gets the pipe length, pipe material, and 
equipment parameters of the pipeline from the data 
layer to establish a model, and uses algorithm simulation 
to solve the model. The fourth layer is the application 
layer, which includes application services based on 
simulation models such as state monitoring, equipment 
fault diagnosis, and energy consumption optimization. 
The interface starts the service through calling the 
service interface, then displays the calculation results, 
including curves, charts, schemes, to the user. 

2.2 Physical model 

2.2.1 Quasi-steady models for elements 

Compressor 

Some parameters are very important for compressor 
performance, for example isentropic head, isentropic 
efficiency, rotational speed and power. The equation for 
head will be : 

𝐻 =
𝑚

𝑚−1
𝑍𝑅𝑇1(𝜀

𝑚−1

𝑚 − 1)                       (1) 

In the above equation, H is the polytropic head and 
Z is the gas compressibility factor. R is the specific gas 
constant. 𝜀  is pressure ratio of discharge side and 
suction side. 

Using standard polynomial cure-fit procedures for 
each centrifugal compressor , the relationship between 
head, speed and flow rate could be found by: 
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     𝐻 = 𝑎2 (
𝑛

𝑛0
)

2

+ 𝑏2𝑄 (
𝑛

𝑛0
) + 𝑐2𝑄2     (2) 

The power consumption for the compressor driver is 
currently obtained by: 

𝑃𝑒 =
𝑀𝐻𝑝𝑜𝑙

𝜂𝑝𝑜𝑙
+ Δ𝑃𝑚           (3) 

The gas discharge temperature is obtained by: 

1

2 1
=

m

mT T

−

                (4) 

Regulating Valve 

The valve characteristics determine the 
mathematical model of the valve. The equations for the 
equal percentage valves are: 

𝑝2 = √𝑝1
2 −

𝑍𝐺𝑇1𝑄2

𝐶𝑣
2𝑁1

2         (5) 

𝐶𝑣(𝑋) =
𝐶𝑣𝑜

𝑒3.488−1
𝑒3.488𝑥 −

𝐶𝑣𝑜

𝑒3.488−1
     (6) 

In the equation above, p1 and p2 is the pressure 
where the pipe flow enters and leaves the regulating 
valve; Z is the average compression factor of the 
regulating valve; T1 is the temperature in front of the 
regulating valve; Q is the volumetric flow rate under 
standard conditions; Cv is the current flow coefficient of 
the valve; N1 is the unit conversion coefficient. 
2.2.2 Station system model 

The topology of a gas network is defined by a 
directed graph including N nodes and E edges which 
represent, respectively, the joints and the pipelines[9].  

( )ij ijA a=  the incidence matrix 

1





if node i is the first node of edge j

if node i is the second nodea  1 of edge j

otherwise

= -ij
0

 

where A is the node-branch incidence matrix; where 

1...i N=  and 1...j E=  

At each node i ∈ {1, . . ., N}, flow is exchanged with 
the exterior of the network with mass flow rate qi(t) at 
time t. Of course, qi(t) can be null as it is for structural 
nodes. The sign convention is that qi is positive if the gas 
is introduced into the network and negative otherwise. 
Then the mass conservation at the i-th node at time t 
means 

1 1

(0, ) ( , ) ( ) 1...
E E

j j j

ij ij i

j j

a Q t a Q L t q t i N+ −

= =

− = =     (7) 

 

1

N

i

i

AQ q
=

=                               (8) 

2.2.3 Numerical solution 

The set of pipe flow, compressor, mass balance, and 
looping equations can be represented as[10] 

1 1 2

2 1 2

1 2

( , ,......, ) 0

( , ,......, ) 0

...

( , ,......, ) 0

N

N

N N

F P P P

F P P P

F P P P

=


=


 =

          (9) 

The multivariable Newton–Raphson iterative 
procedure for Eq. (10) takes the form 

1

1 ( )k k kP P P−

+ = − J F         (10) 

1 1

1

1

n

n n

n

F F

p p

F F

p p

  
  
 
 =
 
  

   

J                (11) 

 

2.3 Hybrid model 

2.3.1 Data-driven model 

Back Propagation Neural Network(BPNN) is a 
common supervised machine learning algorithm that 
uses the BP algorithm and the labeled training samples 
to optimize the randomly initialized network weights to 
achieve prediction or classification. A three-layer BPNN 
includes the input layer, the hidden layer and the output 
layer[11].  

In the BPNN, the N-dimensional vector 

1 2{ , ,..., }Nx x x x= represents the input of the network, the 

L-dimensional vector 1 2{ , ,..., }Lh h h h=  represents the 
feature representations of the hidden layer, and the 
affine mapping between the input layer and hidden layer 
can be established by a nonlinear transform, which can 
be expressed as follows 

( )i ij j ih f w x a= +
             (12) 

Where W and a represent the weight matrix and bias 
vector of the network,  

W dimension is N L , m-dimensional vector 

1 2{ , ,..., }my y y y=  represents output layer of network, 
respectively ( )f •  is the sigmoid activation function 

1
( )

1 x
f x

e−
=

+              (13) 
Output layer is linear: 

k ki i ky w h b= +
          (14) 

W and b represent the weight matrix and bias vector 
of the network, 
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To optimize parameters, the mean squared error is 
used as the cost function to optimize the parameters.  

ˆ

TE e e

e y y

=

= −               (15) 
Furthermore, to alleviate the network overfitting 

problem, the L2 norm regularization is introduced, and 
the cost function is described as 

21 1 2( ) ( )* * ˆ[ , ] arg min 22

k k
W b y y W

m
= − +

 
 
 

 (16) 

Forward propagation calculates the output of the 
neural network after it receives an input. Then a 
backward propagation calculates the gradients for all the 
parameters of every layer. The parameters are updated 
based on these gradients to reduce the loss function. In 
this paper, the neural network was trained with 3000 
epochs. 

:ij ij ij

ij

ij

w w w

E
w

w


= +


= −



         （17） 

2.3.2 Hybrid modeling 

In a hybrid model, the physical model is first used to 
calculate device parameters. However, due to model 
truncation errors, curve fitting errors, and other reasons, 
the physical model deviates from the actual 
measurement results. The error data is fed into the BPNN 
data model. As the compressor is the core equipment of 
the station, this article takes the compressor as an 
example to construct a hybrid model. Utilizing the 
conventional process parameters and measurement 
data from SCADA system of the production system to 
compensate for pressure error of the core equipment 
compressor in the station. The measurement data in this 
article is artificially made by adding bias from the model 
simulation values.  

Hydraulic equation of 
equipment 

Graph topology Matrix 

Station system 
equation

Sensors
Measurement

Newton–Raphson 

iterative
1

1 ( )k k kP P P−

+ = − J F

BPNN Model 
training

-
+

Physical model 
result

 
Fig. 2 Schematic diagram of the hybrid model 

 
3. RESULTS AND DISCUSSIONS  

3.1 Physical model 

Source

Next station

compressor
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Fig. 3 station system 

The topology of station system is in Figure 5. The 
system contains four parallel regulating valves as 
resistance elements, such as filters, and two parallel 
compressors. The source pressure is 92bar and the flow 
rate to the next station is 789kg/s. The results of physical 
model includes pressure of nodes(Table1) and flow rate 
of equipment(Table2). 

Table1 Node pressure in station 

Node number Pressure(bar) 

1 91.14 

2 91.08 

3 89.88 

4 104.74 

 
Table2 Equipment flow rate in station 

Equipment number Flow rate(kg/s) 

V2 197.38 

C1 394.79 

3.2 Hybrid model 

Utilizing the conventional process parameters and 
production data of the production system to compensate 
for pressure error of the core equipment compressor in 
the station. The measurement data in this article is 
produced by artificially adding a tiny bias from the model 
simulation result(Figure 4). Specifically, the 
measurement parameters include compressor inlet 
temperature T1, inlet pressure p1, compressor outlet 
temperature T2, outlet pressure p2, rotational speed N, 
and inlet flow Q. The output is error of measurement and 
physical model simulation. 
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Fig. 4 artificially added bias 

 
Fig. 5 discharge pressure(training data) 

 

 
Fig.6 discharge pressure(test data) 

 
Fig. 7 discharge pressure error(test data) 

 

Figure 5, Figure 6 are results of training set and test 
set. From Figure 5, Figure 6, it can be seen that the 
trained model is well validated on the test set.  
Discharge pressure simulated by pure physical model is 
compared with measurement and hybrid model. 
Apparently, the tiny bias is compensated by data-driven 
model in hybrid model. Figure 7 is the error between 
hybrid model and measurement. Figure 7 and Figure 5 
shows that the error decreases about 50% after applying 
hybrid model. 

 
4. CONCLUSIONS 

In this paper, a novel hybrid modeling method is 
proposed for hydraulic simulation of stations in long-
distance natural gas pipelines. More specifically, the 
physical model has the capability to simulate station 
system in quasi-steady state. The error between 
measurement and physical model are then passed into 
the BPNN to train it for predicting the unmodeled error. 
In this way, hybrid model adapts to new measurement 
information. The data-driven component can be updated 
online, which aims to further improve the model’s 
generalization ability. 

According to the results, the application of the 
proposed method to a station system demonstrates 
excellent simulation accuracy. Moreover, the desirable 
features and performance capabilities of the proposed 
method will enable scalability of AI methods for error 
prediction in real-time conditions. The hybrid approach 
combines the advantages of machine learning and 
analytic methodologies, which is expected to benefit 
controller design and simulation of optimization 
decision. 
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