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ABSTRACT 
  With the international energy demand and the 

development of exploration and development 
technology, the development of shale reservoirs has 
gradually become a hot topic all over the world, and the 
existing theories of fluid flow can no longer accurately 
characterize and describe the flow characteristics of 
shale oil reservoirs. The formation pressure 
performances in shale reservoirs are quite different with 
that of conventional reservoirs due to the strong low-
velocity nonlinear flow and starting pressure gradients, 
which will result in dynamic boundary. Few research 
mentioned the effects of dynamic boundary caused by 
the flow mechanism in shale oil reservoirs. In this paper, 
the nonlinear equation of shale oil reservoirs, segmented 
linearization, division of the flow space into matrix and 
SRV regions, application of the source function and 
Newman product method, and creation of finite-length 
strip source functions are employed to analyze the 
effects of dynamic boundary. A novel model of unsteady 
flow in horizontal wells with multi-fractured section 
volume fracturing taking the development of natural 
fractures into consideration was established, and the 
method of solving the pressure of this model by applying 
the iterative method of immovable point was put forth 
using the principles of pressure superposition and 
unsteady flow superposition. The characteristics of the 
dynamic boundary of pressure propagation in volume 
fractured horizontal wells were determined, as well as 
the effects of various reservoir physical parameters on 
the movement of the dynamic boundary, with the aid of 
the proposed mathematical model of unsteady flow in 
volume fractured horizontal wells taking the 
development of natural fractures into consideration. The 
analysis demonstrates that, under the nonlinear flow 
condition, the formation pressure propagation manifests 
as a dynamic boundary problem. The pressure 

propagation dynamic boundary expands more quickly in 
the early period due to the natural fractures in the 
reservoir, but tends to stabilize in the later period, 
indicating the existence of a limiting distance for 
pressure mobilization in the reservoir. The major 
determinants of formation pressure wave and 
mobilization are the physical characteristics of the 
reservoir (permeability, natural fractures). The stronger 
the flow nonlinearity and the more developed the 
natural fractures, the greater the degree of effects on 
pressure propagation. 
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NONMENCLATURE 

Abbreviations  

SRV Stimulated Rock Volumes 

Symbols  

v Flow rate, m/s 
p Transient pressure, MPa 
pe Initial pressure, MPa 
pm Matrix pressure, MPa 
pf Natural fracture pressure, MPa 
pwf Bottom hole pressure, MPa 
r Displacement radius, m 
K Permeability, mD 
Km Matrix permeability, mD 
Kf Natural fracture permeability, mD 
μ Viscosity, mPa·s 

Ga 
Critical threshold pressure gradient, 
MPa/m 

Gb 
Intended threshold pressure 
gradient, MPa/m 

ηt Transient pressure conductivity, m2/s 
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t Time, s 
τ Ephemeral moment, s 
rw Wellbore radius, m 
Q Production, m3/s 
B Volume factor, dimensionless 
H Thickness of formation, m 
R(t) Dynamic boundary, m 
δV Ephemeral source, m3 
ϕ Porosity, dimensionless 
ϕm Matrix porosity, dimensionless 

ϕf 
Natural fracture porosity, 
dimensionless 

C Total compression factor, MPa-1 
xw X-coordinate of source, m 
yw Y-coordinate of source, m 
xf Width of strip source, m 

xe 
Distance of the outer boundary in the 
x-direction of the SRV region, m 

ye 
Distance of the outer boundary in the 
y-direction of the SRV region, m 

δ Dirac function 

 

1. INTRODUCTION 
With the rapid development of the global economy, 

the demand for energy is getting bigger and bigger, the 
exploitation of conventional oil and gas reservoirs can no 
longer meet the needs of development, and there is an 
urgent need to develop new strategic replacement areas 
for oil resources. Among the unconventional resources, 
shale reservoirs have huge potential and wide 
distribution, so the efficient development of shale 
reservoirs is one of the hot research interests to solve the 
problem of energy demand and ease pressure on energy 
supply. Shale oil reservoirs are common examples of 
integrated source-reservoir petroleum accumulations 
with extensively developed nanoscale and microscale 
pore throats, some of which form naturally [1]. The 
structure of the world's energy supply has changed as a 
result of shale oil and gas development and the 
advancement of hydraulic fracturing technology [2]. The 
actualization of industrial oil flow in shale reservoirs is 
followed by a number of issues, including low natural 
production capacity of wells in the field's actual 
production, quickly declining production, and 
constrained well use. According to studies, shale oil 
reservoirs have pore distribution and pore-throat 
connectivity that are very different from conventional 
reservoirs. As a result, fluid flow of shale oil exhibits low-
velocity nonlinear flow and initiates a pressure gradient, 

which has an impact on how effectively the reservoir is 
used throughout the development process [3–4]. 

Several semi-analytical and numerical models have 
been proposed to evaluate the dynamic properties of 
flow in reservoirs. By using the grid finite difference 
method, Yu [5] developed the nonlinear flow 
mathematical model to forecast the dynamic properties 
of reservoir flow and proposed the permeability loss 
coefficient to represent the dynamic change of 
permeability during reservoir development. To create a 
mathematical model of three-phase fluids' nonlinear 
flow that could be solved using numerical techniques, Xu 
[6] developed a novel nonlinear flow model. In order to 
extract the expected pressure profiles for each time step 
outside the boundary of the reference equation, Bezyan 
Yashar [7] discretized the second order nonlinear partial 
differential equation based on the law of conservation of 
mass and newly applied particle swarm optimization as a 
nonlinear solver. Researchers like Jia, Cao, and Wang[8–
10] have also studied nonlinear flow features. 

Although several models have been proposed, the 
majority of these studies do not take into account 
mathematical models that naturally fracture. In order to 
solve the model's pressure, this paper divides the 
formation into matrix and SRV regions, creates an 
unsteady semi-analytical model for volume fractured 
horizontal wells with multiple fracture segments, takes 
into account the development of natural fractures, and 
iteratively solves the model's pressure. 

2. PHYSICAL MODEL AND ASSUMPTIONS 
The mathematical model of volume fractured 

horizontal wells has now been rationalized with 
simplifications and assumptions in order to increase the 
speed and accuracy of the model calculation. These 
assumptions are as follows: 

(1) Ignoring the impact of boundary circumstances, 
the fracture segments entirely traverse the production 
formation, which is a homogenous, equal-thickness 
infinity formation. 

(2) Single-phase flow in the matrix and reservoir 
fractures. 

(3) Ignore the fluid's compressibility, the effect of 
capillary forces on the fluid flow, or gravity, the flow 
process is unsteady flow under isothermal conditions. 

(4) By using a modified nonlinear flow equation of 
motion, the fluid flow law—which deviates from Darcy's 
flow law—is described. 

After volume fracturing, the SRV region is consisted 
of hydraulic fractures and natural fractures. The complex 
fracture network and reforming segments can be 
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simplified for the study of the macro-pressure wave and 
law of the formation, and the SRV region is simplified into 
a homogenous rectangular fracture network region as 
shown in Fig. 1. 

 
Fig. 1 Schematic of volume fractured horizontal well 

considering developed natural fractures 

3. MATHEMATICAL MODEL AND SOLUTION 
The mathematical model of volume fractured horizontal 
wells has now been rationalized with 

3.1 Flow source function construction 

The fluid flow at each transient time can be thought 
of as linear by linearizing the nonlinear equations of flow, 
and by applying the source function, a mathematical 
model can be created. A strip source of infinite length is 
created by organizing an infinite number of line sources 
in an endless plane. Assume that dl, or the transient flow 
rate of the source per unit width of the strip, equals 
ds/dx, or the transient flow rate of the line source per 

unit length. Integrate the line source function at xw∈(xw-
xf/2, xw+xf/2). Define the strip source center as xw and the 
width as xf. It is known that the line source function [11] 
has the following form: 

 
( )

( )
2

w

e

exp
4

,
4π

x x

tc
p p x t

t



 

 −
 −
   − = 

 (1) 

Get: 

 ( )
( )

( )
( )

w f

w f

2
/2

w

e w
/2

d
, exp d

44π

x x

x x

x xl
p x t p x

tc t    

+

−

 −
 = − −

− −  
  (2) 

Also define the error function as: 
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Integrating and simplifying the equation (1), the 
strip source function is obtained in the form: 
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3.2 Mathematical modeling of nonlinear transient 
pressure considering natural fractures 

Suppose there are two sources of infinitely long 
strips in different directions of the plane, as shown in Fig. 
2. The center of the strip source in the vertical X-axis 
direction is xw and the width is xf, and the center of the 
strip source in the parallel X-axis direction is xw and the 
width is yf. The expression for the source function of the 
strips in different directions is: 
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Fig. 2 Schematic of the model coordinate system 

By means of the Newman product combination, the 
source function of the finite-length strip with center (xw, 
yw), width yf and length xf is obtained as: 

 

( )
( ) ( )

( ) ( )

f f
w w

t t

f f
w w

t t

1 2 2, , erf erf
4 4 4

2 2 erf erf
4 4

x x
x x x x

S x y t
t t

y y
y y y y

t t

 

 

 
+ − − − 

= +  
 
  

 
+ − − − 

+ 
 
  

 (7) 

Considering the development of natural fractures in 
the reservoir, the flow equation of natural fracture 
system is: 
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Differential equations for flow in matrix systems: 
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Initial condition: 

 
f m i( , ,0) ( , ,0)p x y p x y p= =  (11) 

Boundary condition: 
Along the x-coordinate 
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If the transient flow rate of this finite-length strip 
source function is dl, then the pressure drop induced by 
this transient source at point M is: 
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As the pressure drop in the formation brought on by 
a single volume fracturing section, the pressure 
fluctuations brought on by a finite-length transient strip 
source function with a given flow rate at a specific 
position can be described. In order to mimic the pressure 
field characteristics under synergistic flow with multiple 
fracture segments, it is necessary to superimpose several 
finite-length strip sources in the plane in general volume 
fracturing horizontal wells with multiple fracture 
modification strips. 

The model is mathematically described as having Q 
production flow rate and N finite-length fracture strips. 
For the point at coordinates (x, y), the pressure decrease 
that is caused at time t is 
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Then the actual pressure distribution in the 
formation is: 

 ( ) ( )e, , , ,p x y t p p x y t= −   (16) 

The principle of superposition of unsteady flow must 
be applied to create a model of volume fractured 
horizontal wells under the condition of variable 
production in the matrix region and the SRV region, 
where the permeability of the SRV is much greater than 
that of the matrix region, if it is necessary to take into 
account the unsteady flow under the condition of fixed 
bottomhole flow pressure and the condition of nonlinear 
flow. 

The pressure drop caused by the kth fracture strip 
with historical flow rate Qk to the location with 
coordinates (x,y) at moment t is as follows, taking into 
account unsteady flow and nonlinear flow conditions: 
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The formation pressure distribution is: 
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The formation pressure gradient distribution is: 
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Using linear flow conditions, the mathematical 
model above depicts unsteady flow in volumetrically 
broken horizontal wells at a specific instant. The 
permeability is functionally connected to the pressure 
gradient by linearizing the nonlinear flow equation, and 
the above model characterizes the nonlinear flow 
process through the time-varying permeability. 

3.3 Solution Methodology 

3.3.1 Treatment of nonlinear flow in transient 
pressure modeling  

Every transient moment's pressure distribution and 
pressure gradient distribution (Eq (12), (13), and (14)), in 
which the pressure conductivity coefficients are the 
magnitudes of the fluctuations correlated with the 
pressure gradient, exhibit nonlinear permeability. The 
following equation can be used to determine the 
pressure conductivity at various times: 
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Solving the pressure function of the model requires 
that the flow Q be solved individually for each discrete 
instant moment. The solution procedure for the flow rate 
Qk,n for the Kth fracture strip at time t is as follows: 
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Among which: 
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Under the condition that Δp(x,y,xk,yk,t) is known, it 
can be found that for the kth fracture strip flow rate Qk,n, 
Δp(x,y,xk,yk,t) at the kth fracture strip of the volume 
fractured horizontal wells is jointly acted on by N 
fractures, then we have: 
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The flow solution equation can be constructed for 
Eq.(19) as follows: 
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At a specific production differential pressure, Δp=pe-
pwf is a known quantity, and a flow matrix for solving 
multiple fracturing strips is established: 
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After obtaining the Qk,n of various fracturing strips at 
time t, the apparent permeability Ke as well as the 
conductivity coefficient ηt are solved. The pressure 
distribution formula and pressure gradient distribution 
formula (Eq.(12),(13),(14)) are then brought back to 
obtain the formation pressure distribution and pressure 
gradient distribution. 

The location of the pressure propagation dynamic 
boundary of volume fractured horizontal wells is 
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identified as follows for the nonlinear flow circumstances 
at various moments: 
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According to the nonlinear flow treatment, the 
pressure propagation dynamic boundary is where the 
formation pressure gradient equals the critical initiation 
pressure gradient. With an apparent permeability of 0 
outside of this area, the formation keeps its initial 
formation pressure. 

3.3.2 Pressure propagation dynamic boundary 
solution  

The iterative solution procedure for the pressure 
propagation dynamic boundary of volume fractured 
horizontal wells considering nonlinear flow is as follows: 

 
Fig. 3 Dynamic boundary solution process of pressure 

propagation 

3.3.3 Numerical solution and iteration of apparent 
permeability 

To generate a curve for the fluctuation of apparent 
permeability with pressure gradient, an expression for 
the relationship between apparent permeability and 
pressure gradient was established. Nonlinear flow in 
shale reservoirs was studied using a two-parameter 
continuous flow model: 

 
1

1
K

v p
a b p

 
= −  − 

+  
 (29) 

Define the expression for apparent permeability 
versus pressure gradient as: 

 e i

1
1K K

a b p

 
= − 

+  
 (30) 

The differentiation principle is used to linearize the 
flow curve into segments. Any part of a pressure gradient 

is viewed as linear flow, and each linear section's 
apparent permeability is related to the pressure 
gradient, which is a constant if the pressure gradient 
changes very little. In accordance with each extremely 
brief pressure gradient section, there: 

 
( ) 0

1
1

e

K
K p a b p

v p p
 

  
−  

 +   = −  = − 
 
 
  

 (31) 

A linear differential equation is created from a line of 
nonlinear percolation differential equations. The 
nonlinear flow process refers to the superposition of 
linear flow at discrete multiple transient periods for a 
particular production duration. 

① The inital value of permeability is initially 
allocated, and for the moment tn, given the initial value 
of permeability, see Eq (21), it is discovered that Q is the 
flow rate of the various fracturing segments at the 
moment. After that, begin to iteratively solve the 
formation pressure distribution and formation pressure 
gradient distribution until the formation pressure 
gradient between two sites is less than or equal to the 
startup pressure gradient, at which time the iteration 
finishes, and the subsequent iterative computation 
begins. The formation is in an inactive condition during 
the first production moment, and the original formation 
permeability serves as the beginning value of the flow 
rate. 

② The permeability values at various locations 
under each moment are determined using the 
distribution of the formation pressure gradient under 
each moment and the relationship between apparent 
permeability and pressure gradient. The permeability 
values within the pressure propagation distance at the 
moment are then geometrically averaged, see Equation 
(15), and this value is used as the initial permeability at 
the following moment. 

③ To determine the pressure propagation 
boundaries for various production durations, repeat 
steps 1 and 2 in their entirety. 

4. MATERIAL AND METHODS 

The pressure field waves and characteristics of the 
near-well zone during the production of a single well are 
depicted based on the decay development method of 
the actual fixed bottomhole flow pressure in the mine 
site, and the effects of natural fractures, geological 
parameters, etc., on the pressure waves and the 
movement of the dynamic boundary are analyzed. 

4.1 Effect of natural fractures on moving boundaries 
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In volume fractured horizontal wells, the 
mobilization distance in various directions is significantly 
increased by the existence of natural fractures, and the 
inflection point is the location of an abrupt change in 
permeability, which shows that the pressure wave has 
reached the matrix region; Accordingly, the moving 
boundary movement distance in the perpendicular to 
the wellbore direction is greater than that along the 
wellbore direction, and the range of early movement in 
the perpendicular to the wellbore direction is greater. 
This is because the perpendicular to the wellbore 
direction is the extension direction of the fractured 
fracture, which is the main direction of fluid flow. 

 
Fig. 4 Plot of the effect of natural fractures on dynamic 

boundary of pressure propagation 

4.2 Effect of reservoir initial permeability on moving 
boundary 

Figure 5 depicts the pressure propagation dynamic 
boundaries for various permeability conditions as a 
function of time in the perpendicular to wellbore 
direction. For various permeability conditions, Figure 6 
depicts the pressure propagation dynamic boundaries 
along the wellbore direction as a function of time. Similar 
movement patterns can be seen in the moving 
boundaries of volume fractured horizontal wells in all 
directions. In the early stages of production, the dynamic 
boundaries spread out more quickly and their distance 
from each other increases, but as production goes on, 
this distance tends to stabilize and stop changing. 

 
Fig. 5 Dynamic boundary move distance over time 

(perpendicular to wellbore direction) 

 
Fig. 6 Dynamic boundary move distance over time 

(along the wellbore direction) 

4.3 The effects of dynamic boundary in different 
directions 

In volume fractured horizontal wells, the dynamic 
boundary's moving distance in various directions exhibits 
a rapid increase in the early stages and a steady pattern 
in the later stages. The dynamic boundary's movement 
rate exhibits a "L" pattern. In addition, the rate of 
dynamic boundary movement slows down more 
gradually in the wellbore direction. Therefore, while 
planning well spacing in horizontal wells for fracturing 
shale reservoirs, this aspect should be taken into 
consideration. 
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Fig. 7 Comparison of dynamic boundary moving distance in 

different directions  

 
Fig. 8 Comparison of dynamic boundary movement rates in 

different directions 

5. CONCLUSIONS 
(1) A novel unsteady porous flow model of volume 

fractured horizontal wells with developed natural 
fractures is established to characterize the pressure 
propagation and mobilization distance of shale oil 
reservoir with developed natural fractures. 

(2) The mobilization distance of volume fractured 
horizontal wells can be significantly increased by the 
existence of natural fractures. The direction 
perpendicular to the wellbore is the direction of 
extension of hydraulic fractures, that is, the direction of 
the main streamline. Hence, the distance propagated by 
the dynamic boundary perpendicular to the wellbore 
direction is longer than the distance propagated along 
the wellbore direction. 

(3) The movement rate of dynamic boundary 
displays a decreasing "L" pattern. In the early period, 
dynamic boundary movement rates are increasing 

quickly due to the abundance of both natural fractures 
and hydraulic fractures in the SRV region. However, the 
movement rate of dynamic boundary is steady when the 
pressure is propagated to the matrix region. 
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