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ABSTRACT 
The calorific value of biomass fuels is affected by 

the moisture content. In this study, the moisture 
content in corn straw, wheat straw, and rice straw was 
measured and predicted based on near-infrared 
spectroscopy (NIR) data.  The prediction performance 
of the partial least squares (PLS) model was the best 
when first-order derivative preprocessing and the 
stochastic method of dataset division were used at the 
same time. The correlation coefficient of calibration 
(Rc

2), the root mean square error of calibration (RMSEC), 
and the root mean square error of prediction (RMSEP) 
were 0.937, 1.984 and 3.411 respectively. The results 
showed that PLS model based on NIR has the potential 
to rapidly characterize the moisture content of biomass 
fuel.  
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1. INTRODUCTION 
The influence of moisture content in biomass fuel 

has drawn a lot of attention for the thermochemical 
conversion processes. Excessive moisture content will 
reduce the calorific value of fuel and increase the cost 
of the process [1,2]. In addition to this, biomass fuels 
with unknown moisture may lead to unstable and 
inefficient combustion process, such as leading to lower 
efficiency and higher NOX, CO and PM emissions [3]. 
Near-infrared spectroscopy is an optical method based 
on the interaction between electromagnetic waves and 
matter in the range of 780-2526nm [4-6].  

Mora [7] used near-infrared hyperspectral imaging 
to estimate the moisture content of loblolly pine wood 
discs, and established a nonlinear iterative partial least 
squares (NIPALS-PLS) model. The correlation coefficient 
of the prediction model reached 0.77, and the root 
mean square errors is 2.1%. Giuseppe [8] used a hand-
held near-infrared spectrometer to test the moisture 
content of 817 wood chip samples from a biomass 
power plant, and found that the PLS model established 
by the second-order derivative, 5-point window, 
second-order polynomial and SNV pretreatment has 
higher accuracy, and R2 is 0.89, RMSEP is 3.0%. Jin [9] 
established a partial least squares model for 
determining the chemical composition of rice straw by 
near-infrared spectroscopy. In the experiment, the rice 
straw sample was ground to 40-60 mesh particles, and 
the results showed that the R2 of the model was higher 
than 0.85. Xue [10] used two different spectrometers to 
study the influence of near-infrared spectrum 
acquisition parameters on the spectral repeatability of 
online measurement of crop straw fuel characteristics. 
In the experiment, the straw samples were cut shorter 
than 50mm.  

In this paper, in order to ensure the integrity of corn 
straw, wheat straw and rice straw as much as possible 
without destroying their internal structure, the samples 
were cut to less than 30mm for experimental analysis. 
The aim of this study was to evaluate the potential of 
NIR spectroscopy in predicting the moisture content of 
straw-based biomass. 

2. MATERIALS AND METHODS 

2.1 Sample preparation 
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Straw samples were taken from Biomass Power 
Plants across China. A total of 204 straw samples were 
collected, including 135 corn straws, 45 wheat straws 
and 24 rice straws. Before analysis, straw samples were 
cut to a length of less than 30mm with scissors, and the 
samples were stored in 120mm*170mm sealed bags at 
room temperature at 20°C. 

2.2 Moisture analysis 

Moisture data was obtained by classical analysis 
methods. First, 5g ± 0.5g of a sample with a length of ≤ 
30mm (accurate to 0.01g) was weighed in the pre-dry 
weighed tray. Then, the tray containing the samples 
was placed into an air-dry oven at 105°C ± 2°C, and 
dried for 2.5 h under blast conditions. The sample was 
removed and weighed while hot to avoid moisture 
absorption by the sample and tray. Finally, inspection 
drying was carried out, with each drying session lasting 
30 minutes, until the mass reduction after two 
consecutive dryings did not exceed 0.02g or the mass 
increased. The total moisture content was calculated 
from the corresponding sample loss mass. 

2.3 NIR spectra acquisition 

The near-infrared spectrum of each straw sample 
was collected using a portable biomass fuel analyzer 
with a wavelength range of 908–1690 nm. Before the 
spectrum of straw samples was collected, it was 
necessary for the environmental background value and 
reference value to be measured first, and then the 
spectral data of the sample was collected. 

2.4 Data processing and analysis 

Spectra were processed and screened using a 

number of different preprocessing methods, including 
standard normal variation (SNV), multiple scatter 
correction (MSC), first and second derivatives. And the 
spectrum without preprocessing method was used as a 
control. The wavelengths with correlation coefficients 
greater than the threshold were selected to participate 
in the model calculation. By setting the threshold range 
between 0 and 1, with a step size of 0.01, the threshold 
that minimizes the root mean square error of prediction 
(RMSEP) of the model is selected as the optimal 
threshold. In the selection of calibration set and 
prediction set, three different division methods are 
adopted, namely random method, K-S method and SPXY 
method. The division ratio of calibration set and 
prediction set for each division method was 4:1.  

2.5 Results and discussion 

The complete sample set of three kinds of straw 
biomass samples including corn straw, wheat straw and 
rice straw, and their moisture statistical parameters are 
shown in Table 1. The moisture content of straw 
biomass ranged from 9.63% to 70.20%, indicating that 
the samples in the sample set had a wide range of 
moisture and were highly representative. 

Table 1 - Straw moisture statistical parameters 

Index Max（%） Min（%） Mean（%） 

Moisture 70.20 9.63 19.78 

The near-infrared raw spectra of corn straw, wheat 
straw and rice straw were shown in Fig. 1 and the 
average raw spectra were shown in Fig. 2. It can be seen 
that there were three obvious absorption peaks in the 
908-1690nm interval. The first peak was near the 
wavelength of 960nm, which corresponds to the 

Table 2 – CC-MLR modeling analysis 

Preprocessing 
method 

Threshold 
Number of 

wavelengths 
Data partition 

method 

Calibration Prediction 

Rc
2 RMSEC Rp

2  RMSEP 

— 
0.24 50 Random 0.935 2.020 0.897 3.655 
0.36 17 K-S 0.893 3.082 0.870 1.665 
0.33 20 SPXY 0.909 2.907 0.185 1.928 

SNV 
0.20 80 Random 0.910 2.370 0.854 4.357 
0.38 13 K-S 0.734 4.811 0.741 2.936 
0.32 28 SPXY 0.842 3.675 0.804 2.760 

MSC 
0.39 9 Random 0.668 4.553 0.504 8.019 
0.34 24 K-S 0.717 4.955 0.624 3.545 
0.34 24 SPXY 0.709 5.096 0.551 2.489 

1-D 
0.22 45 Random 0.936 1.991 0.908 3.450 
0.48 28 K-S 0.926 2.570 0.855 1.687 
0.75 16 SPXY 0.908 2.869 0.838 1.550 

2-D 
0.12 54 Random 0.935 2.007 0.901 3.574 
0.28 14 K-S 0.891 3.127 0.848 1.735 
0.31 11 SPXY 0.890 3.163 0.546 1.836 
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second-order double frequency of the stretching 
vibration of the O-H bond in the water molecule. The 
second peak was near the wavelength of 1440nm, 
which corresponds to the first-order frequency 
doubling of the O-H bond stretching vibration in water 
molecules. The third peak was around 1650nm, which 
was related to the first-order frequency doubling of the 
C-H bond. 

The results of multiple linear regression modeling 
using different preprocessing methods, correlation 
coefficient method to select characteristic wavelengths 
and three data division methods were shown in Table 2. 
The first-order derivative preprocessing method 
showed the best model performance, the correlation 
coefficient of calibration Rc

2 reached above 0.908, and 
the correlation coefficient of prediction Rp

2  reached 

above 0.838. The prediction graph and residual graph of 
the multiple linear regression model after first-order 
derivative preprocessing were shown in Fig.3. 
Comparing the prediction graphs and residual graphs of 
the three data division methods, the predicted values of 
the calibration sets divided by the K-S method and the 
SPXY method deviate greatly from the reference values, 
resulting in an increase in the error of the calibration 

model. The prediction effect of the data set divided by 
the random method was the best, but it can be seen 
from the residual graph in Fig. 3(b) that there were still 
data points with large residuals on the calibration set 
and prediction set.  

Table 3 – CC-PLS modeling analysis 

Preprocessing method Threshold PLS factors Data partition method 
Calibration Prediction 

Rc
2 RMSEC Rp

2  RMSEP 

— 
0.16 11 Random 0.932 2.045 0.916 3.299 
0.17 5 K-S 0.900 3.002 0.843 1.656 
0.17 6 SPXY 0.910 2.872 0.694 1.533 

SNV 
0.24 14 Random 0.878 2.759 0.835 4.620 
0.11 8 K-S 0.815 3.951 0.810 2.944 
0.23 7 SPXY 0.801 4.120 0.848 2.449 

MSC 
0.31 6 Random 0.705 4.294 0.587 7.320 
0.17 8 K-S 0.766 4.407 0.658 4.419 
0.08 7 SPXY 0.727 4.931 0.718 2.407 

1-D 
0.21 12 Random 0.937 1.984 0.910 3.411 
0.19 5 K-S 0.924 2.592 0.860 1.570 
0.19 4 SPXY 0.914 2.792 0.771 1.377 

2-D 
0.11 11 Random 0.937 1.985 0.905 3.509 
0.33 5 K-S 0.872 3.403 0.783 1.817 
0.07 4 SPXY 0.903 2.944 0.834 1.652 
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Figure 3  The multiple linear regression model after the 
first-order derivative preprocessing: the random method 

predicts the scatter plot (a) and the residual plot (b); the K-S 
method predicts the scatter plot (c) and the residual plot 
(d); Scatter plot (e) and residual plot (f) of SPXY method 

predictions. 
 

  
Figure 1  Raw spectrum Figure 2  Averaged raw 

spectrum 
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The partial least squares modeling results after 
using the correlation coefficient method to select the 
characteristic wavelength under different preprocessing 
methods were shown in Table 3. The best prediction 
effect was achieved after the first derivative 
preprocessing for different preprocessing methods, 
with the correlation coefficient of calibration Rc

2 
reaching more than 0.914, and the correlation 
coefficient of prediction Rp

2  reaching more than 0.771. 

The prediction graph and residual graph of the partial 
least squares model after first-order derivative 
preprocessing were shown in Fig.4. The correlation 
coefficient of prediction set divided by the K-S method 
and the SPXY method was relatively large, resulting in 
unstable modeling results.  

Compared with the optimal modeling results of the 
multiple linear regression model, the partial least 
squares model of the data set divided by the random 
method after the first-order derivative preprocessing 
was more accurate, and the correlation coefficient of 
prediction RMSEP was reduced by 0.039. Based on the 
information shown in Fig. 3(b) and Fig. 4(b), significant 
discrepancies can be observed between the calibration 
set samples and the verification set samples within the 

predicted moisture range of 35-70%. The relatively 
weak predictive performance of the model in this range 
was attributed to the limited number of samples 
concentrated in this moisture interval. 

As shown by the correlation coefficient plot (Fig 5) 
and the first loading line (Fig 6), two peaks appear 
continuously in the wavelength range of 1380-1590nm, 
indicating that the correlation between the spectral 
absorbance and moisture in this wavelength range was 
the best strong, this interval corresponds to the 
secondary frequency doubling (1540nm) of the O-H 
stretching transformation. The second loading line (Fig 
6) has absorption peaks at 950-980nm and 1150-
1250nm, which related to the second-order double 
frequency (960nm) and combined frequency absorption 
band (1220nm) of O-H bond stretching vibration. 
Therefore, the strongest correlations between spectral 
properties and moisture content were found in the 
intervals 950-980 nm, 1150-1250 nm, and 1380-1590 
nm, which has a positive effect on further improving the 
prediction accuracy.  

2.6 Conclusions 

In this study, the moisture content of corn straw, 
wheat straw and rice straw were predicted based on 
near-infrared spectroscopy, and the influence of various 
preprocessing methods and data division methods on 
the prediction model was compared. The prediction 
performance of the partial least squares (PLS) model 
was the best when first-order  derivative 
preprocessing and the stochastic method of dataset 
division were used at the same time. By selecting 
spectral bands that were strongly correlated with 
moisture, the prediction accuracy of the model should 
be improved further. 
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Figure 4  Partial least squares models after first  
derivative preprocessing: Random method predicts scatter 
plot (a) and residual plot (b); K-S method predicts scatter 

plot (c) and residual plot (d); SPXY method predicted 
scatter plot (e) and residual plot (f). 
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