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ABSTRACT 
  The number and penetration of electric 

vehicles(EVs) are increasing. Electric vehicle charging 
load has the two characteristics of power load and 
energy storage because electric vehicles are becoming a 
new flexible resource to participate in the auxiliary 
services of power systems, which can improve the 
operation of power systems. As the basis of electric 
vehicle flexibility application, the flexibility 
characterization of electric vehicles has become the 
primary problem to be solved. Therefore, an electric 
vehicle flexibility characterization method based on the 
behavior data of users is proposed. Firstly, the original 
data is cleaned and reconstructed, and the behavior data 
set of electric vehicle users is extracted. Then, based on 
the electric vehicle user behavior data set, an electric 
vehicle user flexibility potential evaluation index system 
is proposed, which characterizes the electric vehicle 
flexibility potential from the three dimensions of 
capacity, charging time, and charging power. Secondly, 
an electric vehicle flexibility controllable region 
construction method based on an evaluation index is 
proposed to describe the flexibility of electric vehicle 
users with different charging habits. Finally, using real 
user data for verification, the results show that the 
proposed method can accurately describe the flexibility 
of different electric vehicle users. The results can provide 
a basis for electric vehicle aggregators (EVA) to 
participate in power grid auxiliary services. 
 
Keywords: behavior data, electric vehicles, flexibility, 
controllable region, user behavior analysis  
 

NONMENCLATURE 

Abbreviations  

EV Electric Vehicle 
EVA Electric Vehicles Aggregator 
SOC State of Charge 

Symbols  

inCap  
Average battery capacity for 
accessing the power grid. 

Capin 
Battery capacity of accessing the 
power grid. 

SOCi 
in 

SOC value accessing the grid of ith 
charging record. 

Capmax Maximum battery capacity of the EV. 

N 
The total number of charging 
records. 

Capmin Minimum battery capacity of the EV. 
SOCmin Minimum SOC value set by the user. 
SOCi 

tra The SOC consumed of ith trip record.  
Ntra The number of trips. 

Capexp 
Off-grid battery capacity EV users 
expect. 

SOCi 
lea 

SOC value when left the grid of ith 
charging record.  

inT  Average on-grid time. 

ti 
in 

The on-grid time of ith charging 
record. 

P  Average charging power. 

Pi 
The charging power of ith charging 
record. 

tc 
end 

The time when the battery is fully 
charged. 
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td 
end 

The time when the battery is 
discharged to Capmin and ended the 
discharge process. 

tst 
The time when the battery with 
Capmin starts charging. 

Capc 
lea 

The off-grid battery capacity after 
charging.  

t 
lea The off-grid time. 

Capc 
end 

The battery capacity after forced 
charging. 

Capd 
end 

The off-grid battery capacity after 
discharging.  

1.  INTRODUCTION 
In recent years, more and more new energy sources 

have been connected to the power grid, which has 
brought new challenges and impacts to the power grid. 
The flexibility and reserve provided by traditional 
thermal power units have made it difficult to meet the 
demand for flexibility. As a special energy storage device 
and power load, EV is also a flexible resource that can 
provide load reserve for the power grid. It was proved 
that making full use of EV flexibility can significantly 
reduce electricity price fluctuations, improve energy 
efficiency, and reduce carbon dioxide emissions in the 
[1]. EV flexibility was defined as the ability of electric 
vehicles to adjust their power load by using charge and 
discharge control in the [2].  

Most of the existing research is based on 
mathematical models. The flexible charging and 
discharging of EVs can be characterized by establishing a 
flexibility model in the [3]. A flexibility evaluation model 
for the EVA was proposed in the [4] by dispatching EVs to 
participate in demand response, which can effectively 
reduce the imbalance risk of the power grid. An EV 
flexibility evaluation model considering the coordination 
of power system transmission and EVA was proposed in 
the [5], which realized the quantification of EV flexibility 
service under the premise of ensuring the stable 
operation of the power system. When describing the 
flexibility potential of EVs, traffic constraints were added, 
and the spatial constraints of EVs were considered in the 
[6]. The above methods rely on the simulation by setting 
the scene in advance to simulate the behavior of the EV 
or EVA. The mathematical model is more idealized and 
cannot truly characterize the randomness of EV 
behavior. 

In addition, some scholars propose a data-based 
flexibility analysis method. By analyzing the charging 
data, the EV flexibility was converted into demand-side 
response capability, and the EV flexibility was quantified 

in the [7]. Based on charging behavior data and electricity 
price data, the flexibility potential of EV users under 
different electricity prices was quantified in the [8]. The 
clustering algorithm was used to identify the types of EV 
charging behavior, and the characteristics of charging 
behavior under different types were analyzed in the [9]. 
The method combined with multi-source data such as 
weather, the flexibility of EVs in each period of the day 
was quantitatively analyzed. An EV flexibility 
quantification method based on the SOC curve was 
proposed in the [10], which realized the coordinated 
operation of a distributed power system with the goal of 
profit for all parties. However, most of the research 
based on EV behavior data currently focuses on 
numerical quantification, and the evaluation results are 
often weak in physical meaning and fail to visually display 
the EV flexibility boundary. 

In summary, a single mathematical model cannot 
effectively describe the flexibility of EV users with 
different behavior habits in real situations. The existing 
methods based on behavioral data often quantify the 
results of numerical types, and the characterization of EV 
flexibility is vague. To solve the above problems, a 
method to characterize the flexibility of EVs was 
proposed based on user behavior data. The flexibility of 
EVs was characterized by constructing an EV flexibility 
controllable region and characterizes the flexibility of EVs 
as a feasible region. The region not only characterizes the 
flexibility of EVs but also points out the flexibility 
boundary of EVs, that is, the boundary where EVs adjust 
their electricity load. The boundary represents physical 
meanings such as charging capacity. The flexibility 
controllable region can provide a basis for EVA to make 
full use of EV flexibility to participate in grid services. 

2. FLEXIBILITY INDEX SYSTEM OF EVS 

2.1 Data preprocessing 

A The original data includes the basic information of 
EV users, charging data, and driving data. Data 
preprocessing includes the processing of outliers and 
missing values, and the data merging and reconstruction. 
For the missing data, the random interpolation method 
is used to fill the missing data based on the data 
distribution. There are many outliers in the original data 
set. The outliers are screened based on the data 
distribution and are deleted from the data record. After 
processing the outliers and missing values in the original 
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data, the original data is extracted and reorganized to 
obtain the EV user data set shown in Table 1. 

The basic information includes user ID, the purpose 
of the vehicle, and battery capacity; The charging data 
includes the start time and end time, charging power, 
SOC accessing power grid, and off-grid SOC for each 
charging behavior; the driving data includes the 
consumption capacity for each trip.  

2.2 Flexibility index system of EVs 

After cleaning and screening the data, an EV user 
flexibility index system is proposed. The index system not 
only can describe the flexibility of EV users numerically, 
but also be used as the basis for constructing the EV 
flexibility controllable region. The index system is 
constructed from three aspects: capacity, charging time, 
and charging power, as shown in Figure 1. 

There are a lot of uncertainties in the charging 
behavior of EV users. The system is an average index 
system. The average value in multiple charging records is 
used to characterize the behavior habits of EV users. 

1) Average capacity accessing power grid 

 
in

=1
in max

N
i

i
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Cap = Cap
N


 (1) 

Where inCap  is the average capacity accessing the 

power grid of the user; SOCi in is the SOC value accessing 
the power grid of ith charging record; Capmax is the 
maximum battery capacity of the EV; N is the total 
number of charging records. 
2) Based capacity 
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Where Capmin is the lower limit of battery capacity, which 
ensures the travel demand of EV users. SOCmin is the 
minimum SOC value set by the user; SOCi 

tra is the SOC 
consumed of ith trip record; Ntra is the amounts of trips. 
3) Expect off-grid capacity 
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N
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Where Capexp is users expect off-grid capacity, which 
contains Capmin to ensure the travel needs of EV users; 
SOC i 

lea  is SOC value when left the grid of ith charging 
record. 
4) Average on-grid time 

 in in
=1

= /
N

i

i 

T t N  (4) 

Where inT  is the average on-grid time of the multiple 
charging records. t i 

in is the on-grid time of ith charging 
record. 
5) Average charging power 

 
=1

= /
N

i

i

P P N  (5) 

Where P  is the average charging power of the multiple 
charging behavior; Pi is the charging power of ith charging 
record. 

3. CONSTRUCTION METHOD OF AN EV FLEXIBILITY 
CONTROLLABLE REGION 

An EV flexibility controllable region construction 
method is proposed based on the index of section 2.2. 
The upper and lower boundaries of the EV flexibility 
controllable region are calculated by using the flexibility 
index value, and the closed area surrounded by the 
upper and lower boundaries is the EV flexibility 

Tab. 1. Data set of EV users 

Data type Data name Note 

Basic 
information 

User id identify users 
The purpose 
of the vehicle 

private car, bus, and so 
on 

Capmax 
Nominal battery 
capacity (kWh) 

Charging 
data 

Start time Indicates when to start 
End time Indicates when to end 

SOCi 
in 

SOC when access grid 
(kWh) 

SOCi 
lea 

SOC when off-grid 
(kWh) 

Pi 
The power of a single 
charge (kW) 

Driving 
data 

SOCi 
tra 

SOC consumed by one 
trip. (kWh) 

 

 
Fig. 1. Flexibility index system of EVs 
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controllable region. Figure 2 shows the EV flexibility 
controllable region under ideal conditions. 

In the Figure 2, E+ 
i  is the upper boundary of the 

flexibility controllable region and E - 
i  is the lower 

boundary of the flexibility controllable region, and i 
represents the serial number of the users. Capmax, Capexp, 
Capin, and Capmin can be obtained directly from the index 
values in Section 2.2. tc 

end is the time when the battery is 
fully charged; t d 

end  is the time when the battery is 
discharged to Capmin and ends the discharge process; tst 
is the time when the battery with Capmin starts charging; 
tlea is the off-grid time. They can be determined by the 
equations (6)-(9). 

 c
inend max=( - )/t Cap Cap P  (6) 

 d
inend min=( - )/t Cap Cap P  (7) 

 exp min- ( - ) /instt T Cap Cap P=  (8) 

 inlea=t T  (9) 

According to whether the inCap  is higher than the 

Capmin, EV users can be divided into two categories: 
Figure 2(I) and (II). 

For Figure 2(I), the upper boundary of Figure 2(I) 
consists of two straight lines: remains charging after 
accessing the grid until Capmax and maintaining the 
waiting state until leaving the grid. The lower boundary 
of Figure 2(I) consists of three straight lines: remains 
discharging after accessing the grid until Capmin, starts 
charging at the latest to meet the Capexp and waiting 
stage of neither charging nor discharging. 

For Figure 2(II), the upper boundary of Figure 2(II) is 
the same as the upper boundary of Figure 2(I). The lower 
boundary of Figure 2(II) consists of three straight lines: 
remains charging after accessing the grid until Capmin, 
starts charging at the latest to meet the Capexp and 
uncharged waiting stage. These lines constitute the 

entire closed region representing the battery capacity 
feasible point set of the EV. 

Figure 3 shows the overall process of the 
construction method, which introduces the construction 
method of controllable regions in detail. The upper 
boundary will be calculated first. If the EV can be charged 

to Capmax within inT  time length after accessing the 
grid, it is proved that the EV has an inflection point (tc 

end, 
Capmax) on the upper boundary, and if not, there is only 
an off-grid point (tlea, Capc 

lea). Capc 
lea indicates the off-grid 

battery capacity after charging. In this way, the 
connection of the inflection point is the upper boundary 
of the EV flexibility controllable region. Cap c 

lea  can be 
determined by the equation (10). 

 c
ininlea= +Cap Cap T P  (10) 

When calculating the lower boundary, it is necessary 
to consider the two types of Figure 2(I) and Figure 2(II) 
separately. For Figure 2(I), the lower boundary is the 
discharge boundary. The lower boundary also needs to 
calculate its inflection point. If the EV can be discharged 

to Capmin, and charged from Capmin to Capexp within inT
time length after accessing grid, it is proved that the EV 
has two inflection points on the lower boundary. That is 
discharge end point (t d 

end , Capmin) and the starting 
charging point (tst, Capmin). The lower boundary off-grid 
point is (tlea, Capexp). 

But there is only one inflection point on the lower 
boundary of some EVs. If the EV is discharged to Capmin, 

and cannot be charged to Capexp within inT  time length 
after accessing the grid. There is an inflection point (td 

end, 
Capmin) on the lower boundary. The inflection point 
indicates that the charging is started immediately after 
the EV is discharged to Capmin. In this case, the EV cannot 
be charged to Capexp when leaves the power grid, and the 
lower boundary off-grid point is (tlea, Capc 

end).  

 
Fig. 2. EV flexibility controllable region under ideal conditions 
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There is no inflection point on the lower boundary of 
some EVs. If the EV cannot be discharged to Capmin within 

inT  time length after accessing grid, the lower boundary 
off-grid point becomes (tlea, Capd 

end) directly. Capc 
end is the 

battery capacity after forced charging. Capd 
end is the off-

grid battery capacity after discharging. The calculation 
method is as follows equations (11) and (12). 

 ( )c d
end min end= + -leaCap Cap t t P  (11) 

 d
end min d lea= -Cap Cap P t  (12) 

Where, Pd is the set discharge power, and the default is 
7kW. 

For the lower boundary of Figure 2(II), it is still the 
same as its upper boundary as the charging boundary, 
but the lower boundary is expressed as waiting for a 
period to charge to Capexp after accessing the grid. If the 

EV can be charged to Capexp within inT  time length after 

accessing the grid, there is an inflection point (tst ,Capmin) 
and leave grid point(tlea,Capexp) on the lower boundary. If 
not there is just a leave grid point (tlea,Capmin), the Capmin 
just meets the EV's minimum travel needs.  

By calculating the number and location of inflection 
points on the upper and lower boundaries of the user 
and connecting each inflection point into a region. This 
region is the flexibility controllable region of the EV and 
represents the set of feasible points that an EV can reach 
after accessing the grid. EVA can utilize the flexibility of 
EV in this controllable region. 

4. RESULT AND ANALYSIS 
The example used in this paper is the behavior data 

of 6903 EV users in a city in China from May 2021 to May 
2022, including charging and driving. The total number of 
data is nearly 1.4 million. 

4.1 Analysis of the characteristics of the controllable 
region 

 
Fig. 3. EV flexibility controllable region construction process 

 
 

 
Fig. 4. EV user flexibility controllable domain construction 

results 
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Figure 4 shows the user flexibility controllable 
regions constructed based on the method proposed in 
this paper. According to the different boundary shapes 
of the controllable regions, seven types of flexibility 
controllable regions can be obtained. Among them, 
Figure 4(a), Figure 4(b), Figure 4(c), and Figure 4(d) are 
similar to that of Figure 2(I) region mentioned above, 

inCap is higher than Capmin, the upper boundary is the 

charging boundary and the lower boundary is the 
discharge boundary. Figure 4(e), Figure 4(f), and Figure 
4(g) are similar to that of Figure 2(II) region mentioned 

above, inCap is lower than Capmin, and the upper/lower 

boundaries are charge boundaries. The following will 
analyze the characteristics of each region. 

There is a stage of waiting on the upper/lower 
boundary of the Figure 4(a) user, and which indicates 

that the user has a high probability of waiting for the 
scheduling when charging. Figure 4(a) belongs to the 
priority user during the scheduling and the user whose 
controllable region conforms to Figure 2(I). Compared 
with Figure 4(a) users, Figure 4(b) users haven’t a stage 
of waiting on the lower boundary, because it is necessary 

to meet the Capexp within inT  time length. Figure 4(c) 
users haven’t a stage of waiting on the upper/lower 
boundary. Because the users cannot be charged to 

Capmax within inT time length, and be charged 
immediately after being discharged to Capmin. Such 
boundary construction is to meet the travel needs of 
users. Figure 4(d) users are fast-charging and fast-leaving 
users. They charge to the end after accessing the grid on 
the upper boundary, and discharge to the end after 
accessing the grid on the lower boundary. 

The Figure 4(e) user is a fast-charging user with a 
short time in the grid. The upper boundary represents 
charging to leave immediately after accessing the gird, 
and the lower boundary represents charging to the 
Capmin after accessing the gird. There is a stage of waiting 
on the lower boundary of the Figure 4(f) user. Compared 
with Figure 4(e), they have greater flexibility controllable 
regions. Figure 4(g) users are ideal users whose 
controllable region conforms to Figure 2(II). The EV can 

be charged to Capmax after accessing the grid. There is a 
wide stage of waiting on the lower boundary, which has 
the largest controllable region range. 

By obtaining the flexibility controllable region of EV 
users, EVA can acknowledge the flexibility boundary of a 
user. Based on this, users with similar controllable 
regions can be divided into user clusters. By analyzing the 
composition of user clusters, EVA can help EVA 
acknowledge the target user during scheduling and more 
targeted scheduling. 

4.2 User Composition Analysis 

By dividing users with the same controllable region 
characteristics into the same category, all users can be 
divided into 7 categories. Table 2 shows the number of 
various types of vehicles in each type of user cluster 

Horizontally, the distribution of vehicle controllable 
region types for different purposes has different 
tendencies. Because of work needs, the Capin of taxi is 
generally low and the time on the grid is short. Figure 
4(e) users are the most, and Figure 4(a) and Figure 4(b) 
taxi users are used to slow charge after returning home 
and have a longer time on the grid. They can provide a 
capacity reserve for the power grid. The travel and 
charging behavior of private cars is relatively irregular, 
and it is concentrated in the three types of user groups 
Figure 4(b), Figure 4(c), and Figure 4(d), which indicate 
that most private cars can provide a certain capacity 
reserve, but it does not conform to the ideal model. The 
bus is a special kind of vehicle. Its battery capacity is 
larger and the walking route is fixed. It is charging from 
accessing the grid to leaving the grid. It is concentrated 
in two types of users: Figure 4(b) and Figure 4(c). The 
user habits of rental cars and official cars are similar to 
private cars. The difference is that the distribution of 
rental cars is more uniform than that of private cars, 
while the user habits of official cars are highly similar to 
private cars. 

In general, considering the number of users and EV 
flexibility controllable region type distribution, EVA 
should take the private car user as the priority scheduling 

Tab. 2 Distribution and composition of user controllable region types (unit: vehicles) 

Catalog (a) (b) (c) (d) (e) (f) (g) Sum 

Taxi 157 384 23 32 698 37 69 1400 
Private vehicle 152 1146 762 477 144 114 195 2990 
Bus 3 73 166 11 2 1 34 290 
Rental cars 215 687 225 101 271 167 118 1784 
Official car 37 219 107 25 33 9 9 439 
Sum 564 2509 1283 646 1148 328 425 6903 
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object and combine the user's controllable region type to 
schedule for different power grid scenarios. At the same 
time, other users can be scheduled according to actual 
needs. For example, when the grid frequency rises, taxi 
users can be scheduled for fast charging to offset the 
impact of rising frequency; when EVs need to be 
connected to virtual power plants as energy storage, a 
large number of private car users can be dispatched as 
energy storage equipment to give full play to their 
discharge characteristics and provide support for the 
power grid while satisfying users ' travel. 

5. CONCLUSION 
A method to describe the flexibility of EVs based on 

user behavior data is proposed. Firstly, an evaluation 
index system of EV user flexibility potential is established 
to quantify the flexibility of user capacity, charging time, 
and charging power. Then, based on the index system, 
the controllable region of EV user flexibility is 
constructed. The real data is used to verify the example, 
and the users are divided into 7 categories, which 
realizes the description of user flexibility with different 
behavior habits. 

The user composition of different flexibility 
controllable regions is analyzed. From the two aspects of 
the number of users and flexibility controllable region 
type, it is concluded that private car users are the priority 
scheduling objects, which provides a certain reference 
value for EVA to identify target users from the 
perspective of flexibility. 
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