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ABSTRACT 

Oil and gas drilling, essential for exploring and 
exploiting petroleum resources, involves significant time, 
labor, and costs, often exceeding $300,000 daily. 
Predicting the drilling rate (Rate of Penetration, ROP) 
accurately and promptly is crucial for improving 
efficiency and reducing expenses. In drilling, physics-
based and machine learning models are typically used for 
ROP forecasting. Physics-based models, while intuitive, 
often lack precision in complex conditions. Machine 
learning models, though precise, face challenges with 
data availability and training costs in real-time settings. 
This paper introduces a novel approach combining a 
physics-based model with a particle filter algorithm for 
real-time ROP prediction. It adapts the Bourgoyne-Young 
ROP model and Markov assumptions into a state space 
model, using the particle filter to estimate elusive 
coefficients through probability theory. This enables 
real-time data updates for more accurate ROP 
predictions. The proposed framework is evaluated 
against traditional models using open-source and field 
drilling datasets in post-drilling and real-time scenarios. 
Results show conventional physics-based models fall 
short in both scenarios, while machine learning and the 
new particle filter model show significant improvements. 
In post-drilling analysis, these models achieve under 5% 
mean relative error. For real-time predictions, machine 
learning models have over 20% error, but the particle 
filter model reduces this to approximately 15%. This 
highlights the particle filter model's superiority in 
accuracy and cost-effectiveness under dynamic and 
uncertain drilling conditions. This paper presents a 
robust, efficient solution for ROP prediction and 
optimization, marking a significant advancement in the 
drilling field. 

Keywords: rate of penetration, particle filter, real-time 
prediction, physics-based model, machine learning  

NONMENCLATURE 
Abbreviations  
ROP Rate of Penetration 
D Depth 
WOB Weight on Bit 
N Rotary Speed 
Q Flow Rate 
RMSE Root Mean Squared Error 
MRE Mean Relative Error 
RF Random Forest 
SVM Support Vector Machine 
  
Symbols  
𝑎𝑎1 to 𝑎𝑎5 Equation coefficients 
𝒙𝒙𝑘𝑘  The state variables at time 𝑘𝑘 
𝒚𝒚𝑘𝑘  The observed variable at time 𝑘𝑘 
𝒖𝒖𝑘𝑘  The state noise 
𝒗𝒗𝑘𝑘  The observation noise 
𝒛𝒛𝑘𝑘  The random walk value at time 𝑘𝑘 

𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖   The weight of the 𝑗𝑗-th state variable 

of the 𝑖𝑖-th particle at time k 

1. INTRODUCTION 
Drilling represents a costly, high-risk, and formidable 

undertaking, where the cornerstone of efficiency hinges 
upon the intricate process of wellbore extension by 
penetrating formations. This drilling process is intricately 
woven into a tapestry of influences, ranging from 
geological formations, drilling equipment, and downhole 
fluids, to an array of engineering parameters such as 
weight on bit, rotary speed, and flow rate. These factors, 
in conjunction with geological parameters, collectively 
shape the dynamics of the drilling process. Therefore, 
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optimizing the engineering parameters of the drilling 
process stands as a potent strategy for elevating ROP, 
leading to improved drilling efficiency, shorter drilling 
durations, and reduced overall drilling costs. In essence, 
a profound understanding of how various factors impact 
drilling rates, and the establishment of precise drilling 
rate prediction models, form the bedrock upon which 
parameter optimization is built [1]. 

Currently, research on drilling rate prediction models 
mainly focuses on two aspects: physics-based drilling 
rate models and intelligent drilling rate models [2]. 
Physics-based models are the most used drilling rate 
prediction models. Previous researchers have analyzed 
the mechanisms by which various factors influence 
drilling rate and have constructed various forms of 
drilling rate equations, such as the Maurer equation [3], 
Warren equation [4], Bourgoyne-Young equation [5], 
Hareland equation [6], Detournay equation [7], 
Motahhari equation [8], and the modified Yang equation 
[9]. Researchers [10-12] have determined the 
coefficients of drilling rate equations using field drilling 
data through multivariate regression to predict and 
optimize drilling rates. Physics-based drilling rate models 
align with drilling principles, exhibit good 
comprehensibility, have a simple form, and offer easy 
parameter determination. As a result, they have found 
wide-ranging applications. However, the drilling process 
is exceedingly complex, and the strong nonlinear 
relationships between various factors and drilling rates 
are often challenging to accurately describe. Moreover, 
dynamic changes in downhole conditions and the 
presence of uncertainty factors can disrupt the accuracy 
of physics-based models.  

In recent years, data-driven models, with machine 
learning models as representatives, have witnessed 
rapid development in the field of drilling rate prediction 
and optimization [13-16]. Data-driven models, primarily 
based on extensive drilling data, can identify nonlinear 
relationships between drilling rates and various 
influencing factors, often without the need for extensive 
physics-based analysis. This allows them to accurately 
predict drilling rates. Hegde and Soares [17-20] have 
explored the effectiveness of both physics-based and 
intelligent models in predicting drilling rates in different 
scenarios and with different models. Hassan et al. [21] 
employed artificial neural networks for drilling rate 
prediction and coupled the predicted rates with the 
mechanical-specific energy for comprehensive drilling 
efficiency optimization. Negara and Bilal [22] established 
machine-learning models based on input parameters 
from physics-based models to predict drilling rates. 

Ahmed et al. [23] compared the performance of four 
commonly used prediction models, including neural 
networks. Elkatatny [24] constructed neural networks 
based on an adaptive differential evolution algorithm for 
prediction. Li et al. [25] investigated the issue of training 
data volume for intelligent models. Li [26] applied 
algorithms such as Bagging, Random Forest, and 
Gradient Boosting Trees to train drilling rate regression 
models. Previous research has shown that the accuracy 
of intelligent models far surpasses that of physics-based 
models. However, they heavily rely on data, necessitate 
a wide range of input parameters for model training, 
demand a large quantity of high-quality data, and suffer 
from poor interpretability and transferability.  

In summary, both physics-based models and data-
driven models have their respective strengths and 
weaknesses. The former are simple to use, and have 
clear underlying principles, but exhibit lower accuracy. 
The latter yield superior prediction results but struggle 
with transferability and require high-quality data. In 
addition to accuracy and transferability, practical drilling 
rate models should possess dynamics, uncertainty, and 
real-time capability in the actual drilling process. Firstly, 
drilling rates are influenced by a multitude of factors, and 
the underground environment is complex. Therefore, 
the parameters of drilling rate models should be dynamic 
as there are inevitably unaccounted factors during the 
modeling process. Secondly, due to the complexity of the 
underground environment and noise introduced by 
measurement instruments, on-site data may carry some 
uncertainty. Consequently, the parameters of drilling 
rate models should be estimated, and they come with 
associated uncertainties and confidence intervals. 
Finally, the ever-changing underground conditions 
necessitate drilling rate models to have the ability to 
adapt dynamically, meaning the established models 
should be able to update in real time with incoming data. 
However, the current literature on drilling rate 
prediction primarily relies on post-drilling analysis 
scenarios, where researchers use historical drilling data 
for modeling and prediction, making full use of all drilling 
data. Only a limited number of researchers [10, 12, 18, 
20, 27] have worked on establishing drilling rate models 
based on real-time drilling scenarios, utilizing partial, 
real-time transmitted data. Few have studied the 
dynamic, uncertain, and real-time aspects of the drilling 
process. Particle filtering is a widely applied algorithm for 
estimating the state of nonlinear systems based on 
observed data [28, 29]. It employs probabilistic methods 
to estimate the current system state, making it an 
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effective tool to handle the dynamics, uncertainties, and 
real-time aspects of the drilling process [30, 31].  

This paper aims to investigate the applicability of the 
particle filtering algorithm in real-time estimation of 
drilling rate equations and real-time prediction of drilling 
rates. Building upon the modified Bourgoyne-Young 
physics-based drilling rate equation [18], this study 
utilizes the particle filtering method to estimate the 
coefficients of the drilling rate equation in real time. The 
study compares the drilling rate prediction performance 
of physics-based drilling models, intelligent drilling 
models, and particle-filter-based physics-based models 
in two scenarios: post-drilling analysis and real-time 
prediction. It reveals the advantages of the particle 
filtering model in handling the dynamic, uncertain, and 
real-time characteristics of the drilling process. The 
findings of this research can provide valuable insights for 
real-time drilling rate prediction, optimization, and 
decision-making in drilling operations.  
2. PARTICLE FILTERING-BASED DRILLING RATE 

EQUATION ESTIMATION MODEL  

2.1 Physics-based ROP model 

Physics-based drilling rate models have gained 
widespread acceptance due to their simplicity, 
interpretability, and alignment with drilling principles. 
The Bourgoyne-Young drilling rate equation [5] stands as 
the most used physics-based drilling rate model. This 
model encompasses various factors, such as formation 
strength, drilling pressure, rotary speed, flow rate, tooth 
wear, hydraulics, and pressure differentials, that 
influence drilling rates. Despite its comprehensive 
consideration of factors affecting drilling rates, many 
parameters within the Bourgoyne-Young model are 
challenging to obtain in practical applications, such as 
formation compactness and tooth wear. Furthermore, 
the model incorporates several standardized empirical 
parameters, like normalized depth and normalized 
drilling pressure, which need re-estimation when 
different drill bit equipment is used. This significantly 
limits the model's applicability. Soares and colleagues 
[18], based on theoretical analysis, have introduced a 
modified Bourgoyne-Young model that eliminates 
standardized empirical parameters and focuses solely on 
key influencing factors.  
𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎1𝐷𝐷𝑎𝑎2𝑊𝑊𝑅𝑅𝑊𝑊𝑎𝑎3𝑁𝑁𝑎𝑎4𝑄𝑄𝑎𝑎5  (1) 

In the equation, where 𝑎𝑎1 to 𝑎𝑎5 are the equation 
coefficients, ROP represents the drilling rate (m/h), 𝐷𝐷 
represents the well depth (m), 𝑊𝑊𝑅𝑅𝑊𝑊  represents the 
weight on bit (kN), 𝑁𝑁 stands for rotary speed in RPM, 
and 𝑄𝑄 represents the flow rate in L/min.  

Soares and his team compared the performance of 
the modified model and the original model on drilling 
data from 18 different formations. They found that the 
modified Bourgoyne-Young model had the lowest 
absolute error in 14 formations and the lowest root 
mean square error in all 16 formations, indicating that 
the modified model simplified parameter acquisition and 
calculation processes while maintaining computational 
accuracy. Therefore, this paper employs the modified 
Bourgoyne-Young model to describe the relationship 
between drilling rates and other parameters in the 
drilling process.  

2.2  State space model of the drilling process 

Based on a first-order Markov assumption, the 
drilling process can be described using the state-space 
model shown in Fig. 1 [32, 33]. This model consists of the 
state equation and the observation equation in Eq. (2), 
where the state equation characterizes the evolution of 
state variables, and the observation equation describes 
the relationship between system variables and observed 
values. Due to the complexity of the subsurface 
environment, the coefficients of the drilling rate model 
should be dynamic during the drilling process, while 
drilling rate, well depth, and drilling engineering 
parameters are measurable. Eq. (1) links the drilling rate 
with well depth and engineering parameters through the 
coefficients 𝑎𝑎1 to 𝑎𝑎5. Therefore, for the drilling process 
described by Eq. (1), this paper regards the equation 
coefficients 𝑎𝑎1  to 𝑎𝑎5  as the state variables x of the 
system and drilling rate (ROP), well depth (D), weight on 
bit (WOB), rotary speed (N), and flow rate (Q) as the 
observable variables y. Using filtering methods based on 
observed data, Eq. (2) estimates the current state 
variables, enabling the determination of the current 
drilling rate model. This forms the foundation for 
subsequent drilling rate prediction and optimization. 

�𝒙𝒙𝑘𝑘 = 𝑓𝑓(𝒙𝒙𝑘𝑘−1) + 𝒖𝒖𝑘𝑘
𝒚𝒚𝑘𝑘 = ℎ(𝒙𝒙𝑘𝑘) + 𝒗𝒗𝑘𝑘      (2) 

 

 
Fig.1. State space model of the drilling process 

In the equation, 𝒙𝒙𝑘𝑘  and 𝒙𝒙𝑘𝑘−1  represent the state 
variables at time 𝑘𝑘 and time (𝑘𝑘 − 1), respectively. 𝒚𝒚𝑘𝑘 
denotes the observed variable at time 𝑘𝑘, while 𝒖𝒖𝑘𝑘 and 
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𝒗𝒗𝑘𝑘  represent the noise in the state transition process 
and the observation process, respectively. It is assumed 
that the system's observed variables 𝒚𝒚  and the state 
noise 𝒖𝒖𝑘𝑘  and observation noise 𝒗𝒗𝑘𝑘  are independent, 

and both the state noise and observation noise follow 
Gaussian distributions.  

Based on Eq. (1), we can derive the observation 
equation as follows: 
 

⎩
⎪
⎨

⎪
⎧

𝑦𝑦𝑘𝑘,1 = 𝑥𝑥𝑘𝑘,1 + 𝑥𝑥𝑘𝑘,2𝑦𝑦𝑘𝑘,2 + 𝑥𝑥𝑘𝑘,3𝑦𝑦𝑘𝑘,3 + 𝑥𝑥𝑘𝑘,4𝑦𝑦𝑘𝑘,4 + 𝑥𝑥𝑘𝑘,5𝑦𝑦𝑘𝑘,5 + 𝑣𝑣𝑘𝑘
𝑦𝑦𝑘𝑘,2 = (𝑦𝑦𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,3𝑦𝑦𝑘𝑘,3 − 𝑥𝑥𝑘𝑘,4𝑦𝑦𝑘𝑘,4 − 𝑥𝑥𝑘𝑘,5𝑦𝑦𝑘𝑘,5)/𝑥𝑥𝑘𝑘,2 + 𝑣𝑣𝑘𝑘
𝑦𝑦𝑘𝑘,3 = (𝑦𝑦𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,2𝑦𝑦𝑘𝑘,2 − 𝑥𝑥𝑘𝑘,4𝑦𝑦𝑘𝑘,4 − 𝑥𝑥𝑘𝑘,5𝑦𝑦𝑘𝑘,5)/𝑥𝑥𝑘𝑘,3 + 𝑣𝑣𝑘𝑘
𝑦𝑦𝑘𝑘,4 = (𝑦𝑦𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,2𝑦𝑦𝑘𝑘,2 − 𝑥𝑥𝑘𝑘,3𝑦𝑦𝑘𝑘,3 − 𝑥𝑥𝑘𝑘,5𝑦𝑦𝑘𝑘,5)/𝑥𝑥𝑘𝑘,4 + 𝑣𝑣𝑘𝑘
𝑦𝑦𝑘𝑘,5 = (𝑦𝑦𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,1 − 𝑥𝑥𝑘𝑘,2𝑦𝑦𝑘𝑘,2 − 𝑥𝑥𝑘𝑘,3𝑦𝑦𝑘𝑘,3 − 𝑥𝑥𝑘𝑘,4𝑦𝑦𝑘𝑘,4)/𝑥𝑥𝑘𝑘,5 + 𝑣𝑣𝑘𝑘

 (3) 

 
In the equation, 𝒚𝒚𝑘𝑘 = [𝑦𝑦𝑘𝑘,1,𝑦𝑦𝑘𝑘,2,𝑦𝑦𝑘𝑘,3,𝑦𝑦𝑘𝑘,4,𝑦𝑦𝑘𝑘,5]𝑇𝑇 =

[ln𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 , ln𝐷𝐷𝑘𝑘 , ln𝑊𝑊𝑅𝑅𝑊𝑊𝑘𝑘 , ln𝑁𝑁𝑘𝑘 , ln𝑄𝑄𝑘𝑘]𝑇𝑇  represents the 
natural logarithm of the observed values of drilling rate, 
well depth, weight on bit, rotary speed, and flow rate at 
time 𝑘𝑘 . 𝒙𝒙𝑘𝑘 = [𝑥𝑥𝑘𝑘,1, 𝑥𝑥𝑘𝑘,2, 𝑥𝑥𝑘𝑘,3, 𝑥𝑥𝑘𝑘,4, 𝑥𝑥𝑘𝑘,5]𝑇𝑇 =
[ln𝑎𝑎𝑘𝑘,1 ,𝑎𝑎𝑘𝑘,2,𝑎𝑎𝑘𝑘,3,𝑎𝑎𝑘𝑘,4,𝑎𝑎𝑘𝑘,5]𝑇𝑇 represents the values of the 
state variables at time 𝑘𝑘.  

The state equation reflects the relationship between 
state variables at consecutive time steps; however, the 
coefficients in Eq. (1) are unknown. According to the 
literature [34], when the state equation is unknown, it 
can be approximated using a random walk, as follows: 
𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 + 𝒛𝒛𝑘𝑘 (4) 

In the equation, 𝒛𝒛𝑘𝑘  represents the random walk 
value at time 𝑘𝑘 , which is drawn from a Gaussian 
distribution. 

With this formulation, the paper has established a 
nonlinear state-space model for the drilling process 
based on Eq. (1): 

�
𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 + 𝒛𝒛𝑘𝑘 + 𝒖𝒖𝑘𝑘
𝒚𝒚𝑘𝑘 = ℎ(𝒙𝒙𝑘𝑘) + 𝒗𝒗𝑘𝑘

 (5) 

2.3 Particle filter algorithm 

Particle filtering, a filtering method suitable for 
nonlinear system state estimation, has gained popularity 
in recent years. It has found widespread applications in 
various fields such as target tracking, fault diagnosis, 
communications, satellite navigation, and sonar 
localization [28, 29]. Particle filtering employs Monte 
Carlo methods to estimate the Bayesian optimal 
estimate. Its principle involves representing the 
posterior probability of a random event through multiple 
random samples (referred to as particles) with 
associated weights, allowing for the estimation of the 
system's state from noisy observed sequential data [33]. 
This paper utilizes the Sequential Importance 
Resampling (SIR) particle filtering algorithm to estimate 
the state of the drilling process. The value of the 𝑗𝑗-th 
state variable at the 𝑘𝑘-th time step (or sequence step 
based on depth, hereafter referred to as a time step) is 

approximated using particles 𝑥𝑥𝑘𝑘,𝑗𝑗
𝑖𝑖 , where 𝑖𝑖 = 1,2, … ,𝑁𝑁 

represents the particle number, 𝑁𝑁 is the total number 
of particles, 𝑘𝑘  denotes the time step, 𝑗𝑗 = 1,2,3,4,5 
indicates the state variable. The workflow of the SIR 
particle filtering is as follows: 
(1) Assuming the probability density function of the 
initial state, 𝑝𝑝0,𝑗𝑗, is known (in this paper, it's assumed to 
be a Gaussian distribution), random samples are drawn 
from 𝑝𝑝0,𝑗𝑗  to initialize each particle, 𝑥𝑥0,𝑗𝑗

𝑖𝑖 , and each 
particle is assigned an initial weight 𝑤𝑤0,𝑗𝑗

𝑖𝑖 = 1/𝑁𝑁. 
(2) 𝑘𝑘 = 1,2, …, perform the following steps:  
Predict the state values for each particle at time 𝑘𝑘 using 
the state equation based on the state values at the time 
(𝑘𝑘 − 1): 
𝑥𝑥𝑘𝑘,𝑗𝑗
𝑖𝑖 = 𝑥𝑥𝑘𝑘−1,𝑗𝑗

𝑖𝑖 + 𝑧𝑧𝑘𝑘,𝑗𝑗 + 𝑢𝑢𝑘𝑘,𝑗𝑗 (6) 
Update the particle weights based on the new 
observation 𝑦𝑦𝑘𝑘,𝑗𝑗

𝑖𝑖  at time 𝑘𝑘: 

𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖 = 𝑔𝑔 �𝑦𝑦𝑘𝑘,𝑗𝑗

𝑖𝑖 − ℎ�𝑥𝑥𝑘𝑘,𝑗𝑗
𝑖𝑖 ��𝑤𝑤𝑘𝑘−1,𝑗𝑗

𝑖𝑖  (7) 
where 𝑔𝑔( )  represents the probability density 

function of the observation noise 𝒗𝒗𝑘𝑘. 
Normalize the weights of all particles: 

𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖 =

𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖

∑ 𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖𝑁𝑁

𝑖𝑖=1
 (8) 

Resample 𝑁𝑁 particles individually: For the 𝑖𝑖-th particle, 
first generate a random number 𝑟𝑟  from a uniform 
distribution in [0,1]. Then, accumulate the weights of the 
particles until their sum is greater than 𝑟𝑟. That is, find m 
such that ∑ 𝑤𝑤𝑘𝑘,𝑗𝑗

𝑖𝑖𝑚𝑚−1
𝑖𝑖=1 < 𝑟𝑟 and ∑ 𝑤𝑤𝑘𝑘,𝑗𝑗

𝑖𝑖𝑚𝑚
𝑖𝑖=1 > 𝑟𝑟. Set the new 

particle's weight as 𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖 = 𝑤𝑤𝑘𝑘,𝑗𝑗

𝑚𝑚 . 
Calculate estimates of statistical quantities like the 
mean, variance, and confidence intervals of the 𝑗𝑗 -th 
state variable at time 𝑘𝑘: 

𝑥𝑥𝑘𝑘,𝑗𝑗 = �𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖 𝑥𝑥𝑘𝑘,𝑗𝑗

𝑖𝑖
𝑁𝑁

𝑖𝑖=1

 (9) 

Reset all particle weights for the next filtering step: 
𝑤𝑤𝑘𝑘,𝑗𝑗
𝑖𝑖 = 1/𝑁𝑁 (10) 
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Following this process allows the calculation of 
estimates for the system's various state variables at each 
time step. 
3. EXPERIMENT CONFIGURATION 

3.1 Dataset 

This study is based on publicly available drilling data 
from the 58-32 geothermal well in the FORGE 
geothermal project in Utah, USA [35, 36], and actual 
drilling data from the K5 well in a domestic oilfield. The 
drilling rate data for both wells is shown in Fig. 2 and 3. 
The 58-32 geothermal well has a depth of 2297 meters, 
and this study analyzes 400 data points in the interval 
from 1425 to 1596 meters. This section used a drill bit 
with a diameter of 222.25mm and consists of a poor 
quartz sand granite formation. The K5 well has a depth 
of 6538 meters, and this study analyzes 1000 data points 
in the interval from 3931 to 4930 meters. This section 
used a drill bit with a diameter of 333.3mm. 

As observed in Fig. 2 - 3, the drilling rate trends for 
these two wells vary significantly. The 58-32 geothermal 
well exhibits frequent fluctuations in drilling rate with 
relatively good overall regularity. In contrast, the K5 
well's drilling rate in the first half displays irregular 
"zigzag" variations. This difference is attributed to the 
high-frequency adjustments of engineering parameters 
like drilling pressure, rotary speed, and flow rate in the 
58-32 geothermal well, while the engineering 
parameters for the K5 well often remain constant for 
several meters. Comparing these two datasets with 
vastly different trends will help reflect the applicability of 
the various models. 

 
Fig. 2. Rate of penetration versus depth of geothermal 
well 58-32 
 

 
Fig. 3. Rate of penetration versus depth of well K5 

3.2 Evaluation Metrics 

In this paper, we first compare the performance of 
physics-based models, filter-based physics-based 
models, and commonly used intelligent models on two 
datasets. To do this, it is necessary to select evaluation 
metrics that measure the performance of each model. 
This paper selects Root Mean Squared Error (RMSE) and 
Mean Relative Error (MRE) as performance evaluation 
metrics. RMSE measures the deviation between 
estimated values and actual values, and its calculation 
formula is as follows:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (11) 

MRE represents the average relative error between 
estimated values and actual values, and its calculation 
formula is as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑛𝑛
�

|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (12) 

Here, 𝑛𝑛 represents the sample size, 𝑦𝑦�  represents 
the estimated sample values, and 𝑦𝑦  represents the 
actual sample values. 

3.3 Model comparison 

The two most common types of models in drilling 
speed prediction are physics-based regression models 
based on physics-based equations and intelligent models 
based on artificial intelligence algorithms. In this paper, 
we compared the performance of physics-based 
regression models, intelligent models, and filter-based 
models in two scenarios: post-drilling data analysis and 
real-time drilling speed prediction. The settings for each 
model are as follows:  
(1) Physics-based Regression Model 

The modified Bourgoyne-Young drilling speed 
equation is selected as the physics-based model, and a 
multiple regression method is used to obtain the values 
of the drilling speed equation coefficients. In the post-
drilling data analysis scenario, the drilling speed equation 
is fitted using all 𝑛𝑛 data points, and then all the data is 
input into the fitted equation to compare the RMSE and 
MRE of the regression drilling speed with the actual 
drilling speed, as shown in the process in Fig. 4. In the 
real-time drilling speed prediction scenario, the process 
is carried out as shown in Fig. 4. First, the drilling speed 
equation is fitted using the first 𝑘𝑘 data points, and then 
the engineering parameters of the (𝑘𝑘 + 1)-th data point 
are input to predict the drilling speed of the (𝑘𝑘 + 1)-th 
data point, which is then compared with the actual value 
to calculate its MRE. After that, the drilling speed 
equation is fitted using the first (𝑘𝑘 + 1) data points to 
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predict and compare the drilling speed of the (𝑘𝑘 + 2)-nd 
point, and this process is repeated. 

 
Fig. 4. Schematic of post-drilling data analysis and ROP 
real-time prediction  
(2) Machine learning Models  

In drilling speed prediction research, common 
intelligent models include Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), Random Forest 
(RF), and Extreme Gradient Boosting (XGBoost), among 
others. Hegde et al. [20] and Echeverri Duque [37] 
compared the performance of these commonly used 
intelligent models in drilling speed prediction and found 
that SVM and RF had higher accuracy in drilling speed 
prediction. Therefore, this paper selects the SVM model 
and RF model for comparison, with the same operational 
procedures in both scenarios as the physics-based 
regression model. To optimize the performance of SVM 
and RF, this paper tunes their hyperparameters (Table 1 
and Table 2) using the grid search method and uses the 
best-performing set for comparison with other models. 
Table 1 Hyperparameters of Random Forest 

Hyperparameters Candidates 
Tree number {10, 50, 100, 200, 500} 
Minimum sample {2, 3, 4} 
Maximum features {2, 3, 4} 

 
Table 2 Hyperparameters of Support Vector Machine 

Hyperparameters Candidates 
Kernel function  {‘linear’, ‘rbf’, ‘sigmoid’} 
Regularization parameter  {0.1, 1, 10, 100} 
Gamma  {0.0001, 0.001, 0.01, 0.1} 
Epsilon  {0.01, 0.1, 1, 10} 

 
(3) Particle Filter Models 

The estimation model based on the SIR particle 
filtering algorithm and the modified Bourgoyne-Young 
drilling speed equation is described in Section 1, and the 
operational procedures for both post-drilling data 
analysis and real-time drilling speed prediction scenarios 
are shown in Fig. 4. In the particle filtering algorithm, 
theoretically, the more particles used, the more accurate 
the results, but an excessive number of particles can 

significantly increase computational costs. In this paper, 
using the K5 well dataset as an example, calculations 
were performed using an Intel(R) Core (TM) i7-8700 
@3.20GHz processor, and comparisons of MRE and 
runtimes were made for different numbers of particles. 
The results are shown in Fig. 5. As seen from the figure, 
when the number of particles exceeds 2000, the error is 
already small enough, and the runtime increases 
significantly. Therefore, in the case analysis, this paper 
sets the number of particles to 2000. 

 
Fig. 5. Mean relative error and run time using different 
numbers of particles 
4. RESULTS AND DISCUSSION 

4.1 Model comparison 

Fig. 6 to 13 respectively illustrate the performance of 
the physics-based model, SVM model, RF model, and 
particle filtering model on the 58-32 geothermal well 
dataset and the K5 well dataset. This includes regression 
drilling speed in the post-drilling data analysis scenario, 
predicted drilling speed in the real-time drilling speed 
prediction scenario, and comparisons with the actual 
drilling speed. 

 
Fig. 6. Performance of physics-based model on well 58-
32 
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Fig. 7. Performance of RF model on well 58-32 

 
Fig. 8. Performance of SVM model on well 58-32 

 
Fig. 9. Performance of particle filter model on well 58-32 

 
Fig. 10. Performance of physics-based model on well K5 

 
Fig. 11. Performance of RF model on well K5 

 
Fig. 12. Performance of SVM model on well K5 

 
Fig. 13. Performance of particle filter model on well K5 
 

Combining Fig. 6 to 13, it is evident that for the 58-
32 geothermal well, in the scenario of using all data for 
post-drilling analysis, all models perform well, with the 
RF model, SVM model, and particle filtering model 
having similar performance, resulting in an average 
relative error of less than 5%. However, when using data 
from the already drilled sections for real-time prediction, 
the prediction errors for all four models increase to 
around 12%. The particle filtering model and the RF 
model demonstrate the best performance. 

For the K5 well, which has a less regular drilling speed 
trend, the physics-based model performs poorly in both 
post-drilling analysis and real-time prediction scenarios, 
with errors reaching 58% and 158%, respectively. In 
contrast, the RF model, SVM model, and particle filtering 
model all show errors of less than 5% in the post-drilling 
analysis scenario. Among these, the SVM and particle 
filtering models perform the best. When performing 
real-time prediction, the RF model and SVM model have 
prediction errors of around 20%, while the particle 
filtering model's error is 15.58%, outperforming the 
other models. 

It can be concluded that the particle filtering model, 
whether used for post-drilling analysis with all data or for 
real-time prediction based on the already drilled data, 
outperforms the traditional physics-based model and 
commonly used RF and SVM models. In post-drilling 
analysis, the RF and SVM models perform similarly to the 
particle filtering model, but to achieve optimal results, 
the RF and SVM models require hyperparameter tuning, 
resulting in higher computational and time costs. In real-
time prediction, the RF and SVM models perform well on 
the 58-32 geothermal well data, which has a more 
regular speed trend. However, when faced with less 
regular data, such as that from the K5 well, their 
performance is less satisfactory. This is primarily due to 
differences in the drilling speed data:  

Firstly, in the real-time prediction scenario, every 
prediction is based on models trained using all the 
previous data. To achieve the best predictive 
performance, an ideal situation would involve 
conducting hyperparameter tuning for every prediction. 
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This process incurs high computational and time costs, 
particularly when using the "real-time prediction" 
scenario, where such costs are considerable [20] [37]. 
For data with good regularity, global hyperparameters 
can describe the overall nonlinear relationships well, 
leading to satisfactory results in real-time prediction 
when dealing with local data. However, for data with less 
regularity, local data may differ significantly from global 
data, making it difficult for global hyperparameters to 
accurately describe the relationships between local data, 
resulting in larger prediction errors. Additionally, in 
practical applications, RF and SVM models may not even 
have access to all-well data for hyperparameter tuning, 
and they may only use neighboring well data. This raises 
concerns about model transferability and further 
increases errors. 

Secondly, even with real-time hyperparameter 
tuning, when local data exhibits significant variations, 
the prediction errors are still considerable. Taking the RF 
model as an example, for data with good regularity, such 
as the 58-32 geothermal well, the error with global 
hyperparameter tuning is relatively small and 
comparable to the particle filtering algorithm. However, 
for data with less regularity, such as the K5 well, the 
maximum relative error reaches 6.7 times and 9.2 times 
that of the global hyperparameter tuning, which does 
not meet the requirements for precision. Based on the 
above analysis, this is because local data with less 
regularity exhibit significantly different trends, and even 
with real-time hyperparameter tuning, the errors in 
predictions are still substantial. 

In contrast, regardless of the data's regularity, 
particle filtering can consistently produce good results. 
This is because the particle filtering algorithm treats the 
previously estimated state at time t-1 as the current 
state for predicting the drilling speed at time t. In this 
scenario, if the environmental conditions at time t have 
not changed significantly from those at time t-1, it is 
assumed that the state at time t is very similar to that at 
time t-1, and therefore the predicted drilling speed is 
accurate. Once the observed values for time t (real 
drilling speed, drilling pressure, rotation speed, etc.) are 
available, particle filtering can correct the estimated 
state using these observations, yielding an accurate 
current state. This process continues recursively. 
Therefore, particle filtering can accurately estimate the 
current state and can predict the next time's drilling 
speed accurately when the environment remains stable. 

4.2 The Performance Evaluation of the Particle Filtering 
Model 

The accuracy of the particle filtering model is not 
only assessed based on the error in estimating drilling 
speed data but also by evaluating the estimated depth, 
drilling pressure, rotary speed, and flow rate, which are 
the four observed data. Table 3 presents the errors in 
estimating depth, drilling speed, weight on bit, rotary 
speed, and flow rate on the K5 well dataset.  

Table 3 MRE of the observed data of particle filter model. 

 D ROP WOB N Q 
MRE 1.71% 1.30% 1.45% 1.49% 1.53% 
Max 24.07% 10.30% 15.46% 16.98% 18.71% 

<10% 98.50% 99.90% 99.60% 99.60% 99.50% 

According to Table 3, the errors between the 
estimated data and the real data using the particle 
filtering model are very small, with estimation errors less 
than 10% for approximately 99% of the data.  

The particle filtering model not only provides real-
time estimates for the drilling speed equation but also 
offers the uncertainty of the estimated parameters. Fig. 
14 illustrates the coefficient of rotary speed and its 90% 
confidence interval in the drilling speed equation 
estimated using the particle filtering algorithm on the K5 
well data. A 90% confidence interval means that there is 
a 90% chance that the coefficient falls within this 
interval, indicating the uncertainty in the estimation of 
the drilling speed equation. From the graph, it can be 
observed that the coefficient of rotary speed changes 
continuously with depth, reflecting the dynamic nature 
of the drilling process. Similar confidence intervals can be 
obtained for the other four coefficients in the drilling 
speed equation. By calculating the mean values, you can 
estimate the coefficients and use these estimates in the 
drilling speed equation. Furthermore, the uncertainty of 
the coefficient terms can be used to calculate the 
uncertainty of the observed data. Fig. 15 displays the 
actual rotary speed, the estimated rotary speed, and 
their 90% confidence intervals. It is evident that the 
estimated rotary speed closely matches the actual rotary 
speed, and the actual rotary speed falls within the 
confidence interval. This indirectly validates the accuracy 
of the estimates obtained using the particle filtering 
algorithm. 
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Fig. 14. Estimated coefficient and its 90% confidence 
interval of rotary speed in the drilling model using data 
from well K5 

 
Fig. 15. Estimated rotary speed and its 90% confidence 
interval using data from well K5  

5. CONCLUSIONS 
This paper delves into the real-time prediction of 

drilling speed by combining the particle filtering 
algorithm with a physics-based drilling speed equation. 
Using the modified Bourgoyne-Young physics-based 
drilling speed equation as a foundation, the particle 
filtering method is introduced to estimate the 
coefficients of the drilling speed equation in real time. 
The performance of physics-based drilling speed models, 
intelligent drilling speed models, and particle filtering 
models in both post-drilling data analysis and real-time 
drilling speed prediction scenarios is compared. The 
paper provides the following conclusions: 
(1) Physical models based on multivariate regression 
offer simple calculations and good interpretability but 
suffer from significant prediction errors. 
(2) RF and SVM models are highly accurate when 
analyzing post-drilling data, with an average relative 
error of less than 5%. However, they exhibit errors 
exceeding 20% when predicting drilling speed in real 
time. Additionally, they face issues related to 
hyperparameter tuning and model transferability, 
making them unsuitable for real-time ROP prediction. 
(3) The particle filtering drilling speed model exhibits an 
average relative error of less than 5% in the post-drilling 
data analysis scenario and a 15.58% error in real-time 
drilling speed prediction. The prediction results are 
accurate, making it suitable for both post-drilling analysis 
and real-time drilling speed prediction. 
(4) The drilling speed equation based on the particle 
filtering algorithm combines accuracy, simplicity, good 
interpretability, and real-time updating. It can 
dynamically estimate the coefficients of the physics-
based drilling speed equation and their uncertainties 
based on observable data such as drilling pressure and 
rotary speed. This model aligns with the dynamic, 
uncertain, and real-time nature of the drilling process 

and serves as a foundational tool for optimizing 
engineering parameters during drilling processes.  
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