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ABSTRACT 
  The petroleum industry is one of the fastest-

growing sectors and has made a significant contribution 
to the economic growth of developing countries. 
Wastewater generated by the petroleum industry 
contains a variety of organic pollutants. These organic 
compounds exist in highly complex forms in discharged 
water and cause environmental hazards. Sono-
electrochemical system is emerging as a future trend due 
to its clean and non-secondary pollution characteristics. 
This process combines ultrasound and electrochemical 
methods to enhance the reaction rate constants for 
pollutant degradation. However, in the system design 
process, the complex interactions between EC, US, 
pollutants, and environmental parameters significantly 
impact the outcomes. Therefore, predicting the kinetic 
constants of organic compound degradation in US-EC 
systems within complex reaction systems is challenging. 
In this study, Machine learning models such as Artificial 
Neural Networks (ANN), Support Vector Machines 
(SVM), and Extreme Gradient Boosting (XGBoost) were 
employed to predict the degradation rates of organic 
compounds in US-EC systems. Comparative analysis of 
the prediction results from different models showed that 
XGBoost performed exceptionally well, with R2 and RMSE 
values of 0.97 and 0.0006, respectively. SHAP analysis 
was conducted to evaluate the impact of design 
parameters on the model's predictive performance, and 
the results indicated that ultrasonic frequency, 
ultrasonic power, and the distance 'r' from the ultrasonic 
transducer to the electrode had the most significant 
influence on the model's predictive performance. This 
method effectively guides the parameter design of US-EC 
systems and enables accurate predictions of the 
degradation rates of organic compounds. 
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NONMENCLATURE 

Abbreviations  

ANN 
SVM 
XGBoost 
AOP 
US-EC 
US 
EC 
ML 
SHAP 
CV 
RMSE 
BDD 

Artificial Neural Networks 
Support Vector Machines 
Extreme Gradient Boosting 
Advanced oxidation processes 
Sonoelectrochemical 
Ultrasound 
Electrochemical 
Machine learning 
SHapley's Additive Interpretation 
5-fold cross-validation 
Root mean squared error 
Boron-doped diamond 

Symbols  

𝑅2 
𝑦𝑖,𝑒𝑥𝑝 

𝑦𝑖,𝑝𝑟𝑒𝑑 

𝑦𝑖,𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

𝑛 

Coefficient of determination  
Actual value 
Forecasted value 
Mean of the value 
Number of the datasets 

 

1. INTRODUCTION 
The petroleum industry has become one of the 

fastest growing industries and has made an important 
contribution to the economic growth of developing 
countries with the continuous development of energy. 
However, wastewater produced through the petroleum 
industry contains a variety of pollutants such as 
petroleum hydrocarbons, phenol, ammonia, sulfides and 
other organic compounds. Easily discharged into water, 
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causing serious harm to the environment and health[1]. 
Due to the complex structure of the compound, it is 
difficult to degrade and is usually not degraded by 
biological treatment. In order to minimize the impact of 
pollutants on the environment, advanced oxidation 
processes (AOP) have received more and more attention 
as an advanced pollutant treatment technology. AOP 
technology primarily generates and utilizes free radicals 
to oxidize and react with many types of organic 
compounds, producing shorter and simpler organic 
compounds, or complete mineralization[2]. In AOP 
technology, sonoelectrochemical (US-EC) oxidation 
process combines two powerful technologies of 
ultrasound (US) and electrochemical (EC), and has 
become a rapidly developing field in recent years 
because of its clean, safe, and efficient treatment 
technology[3]. However, challenges remain with this 
technology. 

Previous studies on the influence of different design 
parameters on the results of US-EC systems generally 
used the response surface design method[4,5]. However, 
this approach has certain limitations. First, the 
experimental design may require a lot of time and 
resources for problems with multiple factors and large 
dimensions. Second, the experimental design must take 
into account the interaction between the factors, 
otherwise the response surface model may not 
accurately describe the relationship between the 
response variable and the factors. In addition, response 
surface models can only predict responses within the 
range of factor levels used in the experiment, but not 
responses outside this range. Finally, the response 
surface model is an empirical model whose accuracy is 
influenced by experimental design and data quality. It is 
difficult for researchers to estimate the relative 
contributions of all factors and focus on the key factors 
that influence contaminant degradation rates and 
reactor design. To overcome the limitations of existing 
models, a more comprehensive approach is urgently 
needed to summarize the effects of various conditions 
on contaminant degradation in US-EC systems and make 
predictions for future work in this area. 

Recently, advances in computer science have led to 
a growing interest in the use of artificial intelligence for 
prediction. Machine learning (ML) methods have proven 
to be powerful prediction tools as they can solve linear 
and complex nonlinear problems[6,7]. This method is 
more flexible than the traditional method of 
multifactorial impact analysis. Machine learning can 
process various types of data, including structured and 
unstructured data, and can automatically recognize and 

learn complex nonlinear relationships between input 
and output variables, resulting in more accurate 
prediction models. At the same time, machine learning 
methods can train models on limited data sets, saving 
time and resources. 

This study uses machine learning methods to predict 
the degradation rate of organic pollutants, and chooses 
the most general ANN, SVM and XGBoost as models. 
Among them, ANN is used in the form of supervised 
learning to identify complex relationships between input 
and output and evaluate the results of input data, and 
SVM is implemented by applying various nonlinear 
mapping functions to analyze and present small samples, 
nonlinear, models with multidimensional and local 
minima. As an ensemble model, XGBoost is estimated 
using the average of many simple models, which can 
capture complex information in the data. It has been 
used for pollutant degradation prediction[8]. However, 
studies of this ML approach have not yet been applied to 
predict the degradation of pollutants in US-EC systems. 
In order to understand how variables affect the 
prediction results. This study performed SHapley's 
Additive Interpretation (SHAP) analysis. SHAP can 
generate feature influences for each instance and 
provide guaranteed explanations for them[9]. 

The overall goal of this study is to predict the 
reaction rate of organic pollutants degradation using 
three ML models in a US-EC system and compare the 
accuracy of the models. Finally, SHAP analysis is used to 
evaluate the impact of design parameters on the model's 
predictive performance. 

 

2. METHODS 

2.1 Data collection and preprocessing 

In order to predict the degradation rate represented 
by the k-value, various influencing parameters were 
taken into account in this study. Fifteen variables were 
selected as input factors, including six EC indicators, two 
US indicators, four pollutant indicators and two 
environmental indicators. The dataset included 90 sets 
of experimental data and another 14 sets derived from 
literature sources. The datasets were compiled by 
searching for the keywords 'sonoelectrochemical' and 
'pollutant degradation' on Google Scholar[10] and the 
relevant information was extracted for use as input and 
output data. To understand the statistical relationships 
between each parameter and the 'k' value, boxplots 
were used for analysis. To enable machine learning 
algorithms to process the data effectively, two 
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categorical input features, namely, electrode material 
and chemical formula, were transformed into numerical 
values using the one-hot encoding technique. This 
transformation step is crucial as machine learning 
algorithms work exclusively with numerical data. In 
addition, all numerical input features were standardized 
to fall within a range of 0 to 1 before being fed into the 
neural network. This standardization step ensures that 
variables measured at different scales contribute equally 
to the training process of the model[11]. 

2.2 Model training and testing 

In this study, using machine learning methods to 
predict the degradation rate of drugs including IBP, and 
chooses the most general ANN, SVM and XGBoost as 
models. In order to train and test the model, the entire 
data set is divided into two parts, of which 90% are used 

as the training data set, and the 10% are used as the test 
data set. Verify the generalization ability of the trained 
model. In the training procedure, the grid search method 
is used to find the optimal hyperparameters and a 5-fold 
cross-validation (CV) method is used to reduce the bias 
arising from the random sampling of the training set. In 
ANN, use Relu as activation function and 3-layers of ANN 
was constructed. The SVM was built using a RBF kernel. 
Set to the value range of the cost constant, epsilon, and 
gamma were optimized. The entire construction process 
is shown in Fig.1.To evaluate the performance of the 
proposed method, the most widely used evaluation 
metrics were adopted: the Coefficient of determination 
(R2) and root mean squared error (RMSE) were utilized to 
compare the accuracy of predictions. The equations 
were given in eq (1) and (2). 

 

R2 = 1 −
∑ (yi,exp−yi,pred)

2n
i=1

∑ (yi,exp−yaverage
target̅̅ ̅̅ ̅̅ ̅̅ ̅

)
2

n
i=1

  (1) 

RMSE = √∑
(yi,exp−yi,pred)

2

n

n
i=1   (2) 

 

2.3 Model performance evaluation 

SHAP analysis was used to evaluate variables’ 
importance to models. SHAP analysis is a locally accurate 
and consistent feature attribution method that provides 
more stable rankings than previous importance 
measures[12]. SHAP values attribute the marginal 
contribution from each predictor variable to each 
prediction (measured relative to the average prediction). 

 

3. RESULTS AND DISCUSSION 

3.1 Section of material and methods 

According to the flowchart, the first step involves the 
collection of raw data sets. A total of 104 datasets were 
collected, containing 15 input features and 1 target 
variable, with consistent units. Next, during the feature 
engineering phase, we categorized the database based 
on the target pollutant and response system conditions. 
To ensure that no data were overlooked, we were guided 
by relevant literature studies when selecting descriptors 
for this study. The primary characteristics of the target 
pollutant included drug-related information such as 
molecular formula, molecular weight, initial pollutant 
concentration, and pKa coefficient. Reaction system 
conditions included parameters such as ultrasonic 
frequency, ultrasonic input power, electrode material, 

 
Fig. 1. Flowchart of the strategies of the modeling 

framework to predict the kinetic constant of pollutants 
degradation process in US-EC system.  
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electrolyte concentration, voltage, electrode area, 
distance and electrode position. Environmental 
conditions such as temperature, volume and pH were 
also taken into account. All of these factors were taken 
into account when evaluating their effects on the 
reaction kinetics. Prior to applying machine learning, the 
data were subjected to manual categorization, where 
the headings for each group of influencing factors (e.g., 
EC_material, EC_Electrolyte, EC_Voltage, etc.) were 
changed in the preprocessing steps. Although it was 
expected that all data could be taken directly from 
literature sources, there was insufficient information on 
the electrode positions in ultrasonic reactors. The 
missing data affected the size of the database and the 
prediction accuracy of the model. Therefore, the missing 
data was supplemented by calculating the positions 
based on the given reactor dimensions, electrode 
spacing and immersion depths. Based on the distribution 
in the boxplots, outliers were identified, which mainly 
originated from data sets from other literature with 

different experimental conditions than in our study. To 
ensure the accuracy of variable significance, these 
outliers were removed, reducing the database from 104 
to 102 data sets. 

Two categorical variables within the input data 
(reaction material and chemical formula) were 
transformed using one-hot encoding. Following 
preprocessing, all datasets were randomly divided into 
two groups, with 90% of the data used for model training 
and the remaining 10% for validation. Fig 2 illustrates the 
results of comparing all tested k values with the original 
k values.  

The R2 for the SVR, ANN, and XGBoost models were 
0.81, 0.95, and 0.97, respectively, the RMSE results were 
as follows:0.006, 0.007, 0.0006. These results indicate 
that XGBoost outperforms ANN and SVR in terms of 
predictive performance. Furthermore, the model Train 
Score is 0.99 for XGBoost which means model is not 
overfitting. This may be due to the regularization term 
added to the XGBoost model to control the complexity of 
the model and reduce the risk of overfitting.  

3.2 SHAP analysis 

This study not only evaluated how well the k value 
prediction model can make accurate predictions, but 
also analyzed the insights provided by the trained model 
on the importance of different variables using SHAP. 

The analysis of feature importance was divided into 
two groups: categorical variables and numerical 
variables. Among the categorical variables, shown in Fig. 
3A, there was a significant effect on the reaction rate 
when BDD (boron-doped diamond) was used as the 
electrode material. This effect is due to the higher 
oxidation potential of BDD compared to other electrode 
materials, which allows it to effectively oxidize more 
pollutants and increase the degradation rate[13]. In 
contrast, other categorical variables had no significant 
effect on the results. Therefore, the main focus of this 
study was to investigate the effects of numerical 
variables. The importance of numerical variables, as 
shown in Fig.3B, was assessed in descending order of 
importance. It was found that US power and frequency 
played a central role in predicting reaction time, as their 
values significantly influenced the outcome. These 
variables were followed in importance by the distance 
from the origin to the coordinate position (r), the applied 
voltage, the electrode area, the electrode spacing and 
the electrolyte. The other input parameters had a 
negligible influence on the results. It is noteworthy that 
the two most important predictors in terms of weighting 

 
Fig. 2. Results of original and predicted values under [A] 

SVR, [B] ANN, and [C] XGBoost models. 
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contained key information for the prediction of the k 
value, indicating their crucial role in predicting the 
reaction rate constant. Consequently, it is advisable to 
prioritize the consideration of US power and frequency 
when developing a US-EC system. 

To gain deeper insights into the positive or negative 
relationships between different indicators and the 
outcome variable, a special variant of SHAP, called Tree 
SHAP, was used for model interpretation in this study. 
Fig. 3C shows a summary SHAP diagram that combines 
the attribute importance and attribute effects. Each 
point in this diagram represents a feature and its 
corresponding Shapley value for a particular instance. 
The vertical position on the y-axis is determined by the 
feature, while the horizontal position on the x-axis is 
determined by the Shapley value. The color represents 
the value of the feature and ranges from low to high. 

When overlapping points align along the y-axis, this 

provides a clear view of the distribution of Shapley values 
for each trait. Among these traits, US power had the 
greatest impact on the model, with higher trait values 
associated with higher Shapley values, implying a greater 
response rate constant. This was closely followed by US 
frequency and distance from origin to coordinate 
position (r), both of which had a significant influence, 
with lower feature values leading to higher reaction rate 
constants. In addition, the applied voltage also played a 
decisive role, with a higher voltage having a more 
positive effect on the result. Although larger electrode 
areas and smaller electrode spacing contributed to 
higher pollutant degradation rates, their significance was 
comparatively small. The SHAP analysis provides insight 
into specific areas and shows the expected trends in 
result changes under certain conditions. Consequently, 
combining this information with the actual experimental 
conditions is essential to determine whether a particular 
feature can be selected for intervention. 
 

4. CONCLUSIONS 
This study aimed to use machine learning to predict 

the degradation of organic compounds in the US-EC 
system under different influencing parameters. The 
results can be summarized as follows: 

1. Summarized 104 datasets of in the US-EC system, 
and used SVR, ANN, and XGBoost models to predict the 
reaction rate constants for organic pollutants 
degradation. The best prediction model is XGBoost, with 
R2 and RMSE of 0.97 and 0.0006 respectively. The model 
has excellent prediction performance.  

2. The SHAP evaluation results show that the 
ultrasonic frequency, ultrasonic power and the distance 
r between the electrode and the ultrasonic emission 
source have the most significant impact on the model 
prediction performance. 
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