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ABSTRACT 
  Battery management system (BMS) is crucial to 

ensure the efficiency and safety of the Lithium-ion 
battery pack by monitoring the real-time voltage, 
current, and temperature. In particular, the monitoring 
and warning system of the BMS is especially vital and 
demanding. However, most researchers separate the 
battery states as individual tasks and discuss them 
respectively, while state of charge (SOC), state of health 
(SOH), and state of temperature (SOT) are coupled and 
should be estimated simultaneously in one model. To 
satisfy the demand for the online monitoring and 
warning system, this paper proposed an integrated 
estimation model based on temporal convolution 
network (TCN) and multi-task learning taking the 
mutuality of the SOC, SOH and SOT into consideration. 
Specifically, four assessing indexes were obtained by 
analyzing the relationship, tendency and characteristic of 
the temperature and capacity during the battery aging 
process. Then, a multi-timescale model was built 
combined with the conception of multi-task learning, 
namely the hierarchical temporal convolutional network 
(HTCN), and the temperature varying tendency is 
predicted along with the battery states as different 
output tasks. At last, the model was transferred to test 
datasets to validate the generality, accuracy and 
robustness. Results show that the mean average error 
(MAE) of the SOC, SOH and SOT estimation are 1.37%, 
0.95% and 1.01%, respectively. This paper provided a 
novel, practical and reliable route for the comprehensive 
BMS construction. 
 
Keywords: BMS, co-estimation, multi-time-scale model, 
multi-task learning  
 

NONMENCLATURE 

Abbreviations  
BMS 
CC-CV 
DOD 
SOC 
HTCN 
  
SOE 
SOH 
SOT 
SOP 
MAE 
MSE 

Battery management system  
Constant current-constant voltage 
Depth of discharge 
State of charge 
Hierarchical temporal convolutional 
network 
State of energy 
State of health 
State of temperature 
State of power 
Mean-average error 
Mean-square error 

RMSE Root-mean-square error 
R2 R-squared 

1.1 Battery state estimation  

The Battery Management System (BMS) is an 
important link between power batteries and electric 
vehicles. It estimates the states of the entire battery pack 
by monitoring the status parameters of the battery cells, 
such as voltage, current, and temperature. The accurate 
state estimation makes corresponding control 
adjustments and strategy implementation for the power 
battery system, and realizes the charge and discharge 
management of individual cells to ensure the safe and 
stable operation of the electric vehicles. 

Battery state estimation is an essential role of BMS, 
including State of Charge (SOC), State of Health (SOH) 
and State of Temperature (SOT), etc. It is intended for 
effective charging, thermal management and health 
monitoring prerequisites of the battery [1]. SOC and SOH 
cannot be measured by instruments directly and are 
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usually estimated using model-based methods or data-
driven methods. Model-based methods mainly use 
electrochemical models and equivalent circuit models to 
describe the internal structure and aging mechanism of 
batteries. However, high interpretability models require 
considerable parameters obtained by a series of 
complicated experiments. In addition, model-based 
methods are usually designed for specific batteries and 
are difficult to apply widely. Unlike the above way, the 
data-driven methods avoid modeling the complicated 
internal mechanism of lithium-ion batteries and instead 
use a large amount of data to establish a mapping 
function between input attributes and battery status. In 
addition to simplifying the modeling process, it also 
provides high accuracy and robustness. Therefore, it has 
become a research hotspot in the field of battery 
management systems.  

Roman et al. [2] developed a machine learning-based 
method for predicting SOH and tested it on 179 battery 
cells to demonstrate the efficiency of machine learning 
for the task of estimating SOH. Cai et al. [3] and Lipu et 
al. [4] constructed SOH estimation algorithms from an 
optimization perspective. Li et al. [5] and Lin et al. [6] are 
committed to exploring input indicators that can be 
effective for SOH. In addition, most researchers study 
SOC as an independent task and optimize the estimation 
accuracy with the similar idea. Although these methods 
have achieved high prediction accuracy, they are difficult 
to apply in reality due to their large amount of calculation 
and redundant models. Therefore, Tian et al. [7] 
simultaneously estimated SOC and SOH in one model 
and achieved good accuracy. However, this method 
ignored that SOC and SOH are at different time scales, 
and it is challenging to obtain satisfactory results using 
input data of shorter time scales. Therefore, it is 
necessary to study unified deep-learning network 
structures under different time scales to estimate 
multiple battery states simultaneously. 

1.2 Early battery thermal warning 

Lithium-ion batteries have high energy density, and 
chemical reactions continue proceeding during the 
working process, so they are highly temperature 
sensitive, causing temperature to have an important 
impact on their safety and cycling life. Thermal runaway 
is one of the fatal safety accidents forms of battery 
failure, resulting from thermal abuse, electrical abuse, or 
mechanical abuse. For thermal abuse, heat accumulates 
inside the battery, further accelerating the reaction rate, 
causing a sharp rise in temperature, producing 
flammable gas and destroying the internal structure of 

the battery, eventually causing fire or explosion. If the 
battery constantly works in a high temperature or 
overcharged/discharged, it will accelerate the aging of 
the battery. At the same time, the internal resistance of 
the battery will increase, the service life will be 
shortened, and the probability of thermal runaway will 
increase. Therefore, it is very important to accurately 
predict the battery heat generation and temperature 
change trends, and timely mobilize the battery thermal 
management system based on the battery's thermal 
status information to dissipate heat efficiently and 
reasonably to prevent heat accumulation.  

Many researchers have conducted relevant 
investigations on thermal early warning applying 
multiple methodologies. Li et al. [5] proposed a 
sequential-transformer thermal early warning system 
(STTEWS) for prismatic LiFePO4-Graphite battery 
composed by a new allied temporal convolution-
recurrent diagnosis network (TCRDN) and a complete 
transformer thermal diagnosis network (TTDN), which 
managed to reach the thermal diagnosis accuracy of 
95%. To predict the thermal runaway (TR) of the battery 
pack, Zhang et al. [8] established a data-driven fusion 
model named Multi-Mode and Multi-Task Thermal 
Propagation Forecasting Neural Network (MMTPFNN) 
applying the thermal image and the discrete operating 
data of 18650 cells. Besides, a temperature-based TR 
propagation grading warning strategy was proposed to 
improve the applicability of the model with the 

temperature threshold of 60 ℃ . Overcharge tests on 
LiFeO4 batteries were conducted at various current rates 
(C-rates) and the indicators of voltage, gas, and 
temperature during overcharge were analyzed by Zhang 
et al. [9] to monitor, warn and mitigate the TR process, 
especially in Stage II (gas detected stage). Lyu et al. [10] 
discovered and validated the feature that when the cell 
started to be overcharged, the slope of the dynamic 
impedance in a specific frequency band would transfer 
from negative to positive, and the method based on this 
feature managed to warn 580 s before the fatal TR. 
Furthermore, they also developed an online device to 
conduct this warning method by measuring the dynamic 
impedance. To prevent the TR caused by overcharging, 
an indicator named virtual temperature was proposed by 
Jia et al. [11] based on Fiber Bragg Grating (FBG) sensor, 
which is a composite parameter influenced by both 
temperature and strain. Besides, a TR early warning 
method containing three stages was invented by 
integrating the changes of three evaluation indexes. 
Exploiting the influence of the temperature and 
deformation on Electrochemical Impedance Spectrum 
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(EIS), a two-stage early thermal warning model 
containing 3 indexes ranging in three frequency 
spectrums was generated by Dong et al. [12], while 
practical issues including measurement feasibility and 
flexibility were taken into consideration. 

1.3 Research significance 

Correct estimation of battery states is a prerequisite 
for effective battery service. However, current research 
usually treats different battery status estimation and 
thermal warning as independent tasks, ignoring the 
strong coupling and interaction between them. In 
addition, existing research rarely involves the prediction 
of temperature trends. The battery thermal 
management system can only receive implemented 
temperature information, and it takes time from starting 
heat dissipation to reaching the appropriate operating 
temperature, resulting in the thermal management 
system being unable to respond timely, making it less 
efficient, less effective, more energy consuming, and 
may even cause safety accidents such as thermal 
runaway. 

To fix the aforementioned defects, this paper 
proposes a comprehensive monitoring and early warning 
system for battery states based on cross-time-scale 
convolution, which combines multi-time scale and multi-
task learning methods to comprehensively estimate 
temperature trends and health states under a unified 
model to achieve more accurate and reliable battery 
monitoring and early warning system design. In addition, 
considering that indicators under different time spans 
will have a significant impact on the results, this design 
proposes four effective indicators based on the battery 
aging mechanism for multi-state prediction. On this 
basis, a software interface is designed according to the 
model structure, and the prediction process is 
transformed into a user-friendly operation interface to 
facilitate practical application.  

2. METHODS  
This paper aims to construct a reasonable method 

for comprehensive estimation of multiple battery states, 
including how to extract effective input indicators from 
voltage, current, and temperature, construct a model to 
predict the battery state at different time scales, and 
design a loss function to balance different prediction 
tasks. The schematic diagram is shown in Fig. 1. 

 

2.1 feature selection 

According to the parameters’ varying trend during 
the aging process of lithium batteries and the coupling 
relationship among different parameters, this paper 
concludes the voltage, current, and temperature at 
different scales into four input indicators (I1, I2, I3, and I4) 
required in the early warning and health prediction 
process, as listed in Table 1.  
Table 1. Comprehensive estimation index 

Index Expression Description 

I1 R0 Ohmic resistance 
I2 

0 ( )
dU

I It dt
dt

T

R




 

Temperature rising 
potential 

I3 
2 1V V

I t

−


  

Voltage change rate 

I4 
2 1V VT T

I t

−


 

Temperature change rate 

 

2.1.1 Ohmic resistance 

Since the internal resistance of the battery will 
gradually increase with the working cycles, the ohmic 
internal resistance can reflect the health state of the 
battery, so it is selected as the health evaluation index I1. 
As shown in Fig. 2, the voltage and discharge current at 
the discharging instant are used to obtain R0 in a short 
time window: 

0
RV

R
I


=             (1.1) 

 
Fig. 1. Systematic diagram of the estimation model 
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2.1.2 Temperature rise potential  

Observing the voltage, temperature, and capacity 
change curves in the cycling process, it can be seen that 
the greater the voltage changing rate leading to the 
faster temperature rise, and the slope of the voltage 
curve is almost mirror symmetrical with the slope of the 
temperature curve. When the depth of discharge (DOD) 
gets larger, the battery haven been working for longer 
time, which means the more heat accumulation, 
resulting in the faster temperature rises. If the 
charge/discharge current is bigger, the internal chemical 
reaction of the battery will be more violent, inducing the 
more the heat generation. The ohmic internal resistance 
is part of the internal resistance, which indicating the 
aging degree of the battery, and also deciding the heat 
generation ability due to the Joule’s law. The difference 
between the battery and the ambient temperature is 
related to the extent of heat natural convection. The 
battery tends to exchange more heat with coolant if this 
gap is larger, and the easier for temperature to drop. 
Based on the above analysis, the factors for battery 
temperature lifting are placed in the numerator, while 
the factors that leads the battery temperature dropping 
are listed as the denominator to obtain the temperature 
rise potential I2. 

0

2

0 ( )
heat capacity

dissipate

dU
I It dtP C dtI

T

R

P

R  
= =




    (1.2) 

2.1.3 Voltage change rate and temperature change rate  

The voltage curve characteristics in the charging and 
discharging process are rich, so the more moderate 
voltage window V1-V2 (3.55-3.75 V) is selected as the 
observation interval of the characteristics, and the 
voltage change rate and temperature change rate in the 

voltage characteristic window under different health 
states are analyzed, which are listed as I3 and I4, 
respectively. 

2 1
3  

V V
I

I t

−
=


     (1.3) 
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4
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I

I t

−
=


        (1.4) 

2.2 Model construction 

2.2.1 Temporal Convolutional Network 

The aging process of lithium batteries is closely 
related to time, and most of the existing methods use 
Recurrent Neural Network (RNN) and Long-short Term 
Memory Network (LSTM) to learn the mapping function 
between input features and battery state. Unfortunately, 
when the input sequence is lengthy, RNN and LSTM 
suffer from catastrophic forgetting, which causes them 
to forget information from previous times while learning 
new ones. Therefore, it is difficult for the above models 
to learn the entire life decline process of the battery. The 
Temporal Convolutional Network (TCN) [13] can extract 
the features of sequences of different lengths under 
multilayer convolution by using dilated convolution to 
obtain larger receptive fields, and the residual module is 
used to effectively avoid gradient disappearance. 
However, due to the rapid change of 
microelectrochemical parameters, the state of batteries 
such as SOC/SOP/SOE usually changes in real-time, which 
causes the low-level timescale. Because of the physical 
structure and heat transfer characteristics of the battery, 
the macroscopic temperature distribution evolves at 
intermediate-level timescale. SOH with high-level 
timescale changes only slightly during a period of time, 
manifested by slow changes in parameters such as 
internal impedance/resistance and capacity [14]. In 
summary, the SOC, SOT, and SOH of lithium batteries 
vary at different time periods, and their feature length is 
different, making it challenging to predict them 
simultaneously. Therefore, we focus on establishing an 
effective mapping between the characteristics of 
different time levels and battery states. 

2.2.2 Multi-task learning 

Most studies design independent frameworks 
estimated SOC, SOT, and SOH, respectively. However, 
this mode cuts the coupling characteristics between 
multiple parameters in the battery working process, 
which no longer meets the current requirements for 
simultaneous prediction of multiple indicators. Multi-
task learning can mine the potential common 
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Fig. 2. Feature selection in CC-CV cycles 
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information in the training samples of related tasks, 
provide additional training information for each task, and 
finally learn in parallel for multiple tasks with shared 
expression characteristics, thereby improving the 
performance of each single task. BMS obtains voltage, 
current, and surface temperature through sensors, but 
how to construct a reasonable loss function to predict 
the different states of the battery through a unified 
input, balancing multiple tasks is another research 
emphasis of this work. 
2.2.3 Model structure of hierarchical temporal 
convolutional network (HTCN) 

We develop a hierarchical temporal convolutional 
network, as shown in Fig. 3, to simultaneously predict the 
battery's SOC, SOH, and SOT in a period online. This 
model can play the role of both thermal warning and 
health monitoring. 

 

Specifically, we construct a multi-layer dilated 
convolution that can receive longer time-scale input data 
to capture long-term dependencies and reach higher 
accuracy. In order to simultaneously predict the battery 
states of different time levels, multi-level fully connected 
layers are built, which can predict both short-time SOC 
and long-time SOH. In addition, to realize thermal early 
warning, the temperature in the coming 3~5 minutes is 
predicted at intermediate-level timescale, namely the 
time left for the battery thermal management system to 
start cooling. The process can be expressed as:  

  ( )+= ,, , t t NSOH SOC T f x        (1.5) 

where f(·) represents our hierarchical temporal 
convolutional network, SOH is the battery health under 
the current number of cycles, SOC is the remaining 
battery capacity at t time, and T  is expressed as the 
predicted temperature after a while. The workflow of the 
multi-time-scale and multi-task prediction structure is 
depicted as Fig. 4. 

 

2.3 Data processing 

This paper is carried out on the Oxford Battery 
Degradation Dataset 1, which contains measurements of 
battery aging data from 8 small lithium-ion pouch cells. 
The cells were all tested in a thermal chamber at 40 
under a constant-current-constant-voltage charging 
profile, followed by a drive cycle discharging profile that 
was obtained from the urban Artemis profile. 
Measurements were taken every 100 cycles. Charging 
and discharging were carried out with 1C and the 
monitoring process continued to the final aged stage. 

Given the battery charge and discharge data over a 
period of time, the voltage, current and temperature 
obtained by its sensor are recorded as  

 
,t t N

V
+

, ,{ }t t NI + , ,{ }t t NT + , and four index I1 are 

calculated from its data, 1I ，  2 ,t t N
I

+
,  3 ,t t N

I
+

, 

 4 ,t t N
I

+
, where 1I  is a scalar quantity, calculated after 

each charge and discharge. In the time dimension, the 
above indicators are connected with voltage, current, 
and temperature to form the input data over a period of 
time, where the input at time t is represented as

 1 2 3 4 ,
, , , , , ,t t t t t t tx V I T I I I I=  in order to eliminate the 

dimensional influence of the input data, reduce data 
noise and outliers, the input data is normalized. 
Secondly, a certain time window is used to divide the 
entire charge and discharge data for the model training. 

3. RESULTS AND DISCUSSION 
In our experiments, we refer to the work of [7] and 

use cell 1-6 in Oxford Battery Degradation Dataset 1 for 
training, while the rest cell 7-8 are arranged as test 
objects. 

3.1 Model performance  

The model performance can be closely related to 
window size in case of time-sequence estimation, when 
window size is set as 1024, the estimation performance 

 
Fig. 4. Workflow of the HTCN estimation process 

 
 

 
Fig. 3. Multi-time-scale estimation model  
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indicators of MAE, RMSE and R2 for the three battery 
states are tabulated as Table 2. 
Table 2. Performance metrics for different tasks 

Estimation tasks MAE (%) RMSE (%) 2R  

SOC 1.37 2.05 0.9838 

SOH 0.95 1.23 0.9957 

SOT 1.01 1.25 0.9587 

3.2 Visual analytics 

The estimation results of the three battery states are 
depicted along with the measured value in Fig. 5, which 
visualizes the model performance through the test 
cycles. 

 

3.3 Effects of time window size 

These three indicators are at different time levels, 
and it can be found that SOT is basically not affected by 
window size, as shown in Fig. 6 (a). SOC estimator 
performs slightly better at larger window as depicted in 

Fig. 6 (b), while SOH prediction results rely heavily on the 
window size, and the longer window brings the better 
performance, as shown in Fig. 6 (c). It can also further 
validate that these three indicators are at different time 
levels. 

 

 

3.4 Comparison with other ML models 

To better validate the superiority of the proposed 
HTCN model, we compared three other commonly used 
machine learning networks which are also capable of this 
mission, which means predict the three states 
simultaneously. The comparison models are designed as 
follows: 

CNN+MLP: we first use a single-layer CNN to reduce 
the feature dimension of the input to 1, then build 3 
linear to predict SOT, SOC, and SOH, respectively. 
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LSTM and RNN: we use LSTM/RNN units with 128 
neurons to capture information in the time dimension 
and use 3 linear layers with different weights to predict 
SOT, SOC and SOH, respectively. 

The comparison was conducted under the same 
condition of time window size =1024, and the results are 
shown in Table 3. It can be found that other models 
cannot make predictions well at different level of time 
scales, and our model (HTCN) can achieve higher 
accuracy due to the near-pyramid structure. 
Table 3. Comparison with other three ML models 

 
Method 

SOT SOC SOH 

MAE 
(%) 

RMSE 
(%) 

R
2 MAE 

(%) 
RMSE 

(%) 
R

2 MAE 
(%) 

RMSE 
(%) 

R
2 

CNN+MLP 1.25 1.59 0.9902 1.61 2.09 0.9809 3.85 5.47 0.3528 
LSTM 1.24 1.59 0.9902 1.62 2.98 0.9754 4.45 6.31 0.1687 
RNN 1.51 1.85 0.9868 2.25 2.91 0.9768 4.69 6.36 0.1240 

Our 
(HTCN) 

1.01 1.25 0.9587 1.37 2.05 0.9838 0.95 1.23 0.9957 

 

4. CONCLUSIONS 
1) A comprehensive monitoring and early warning 

system for battery health and thermal state is designed, 
which takes into account the coupling relationship and 
interaction between temperature characteristics and 
capacity attenuation during aging, and conducts online 
monitoring and early warning of health state and 
temperature rise trend at the same time to ensure the 
efficiency and safety of battery usage.  

2) According to the parameter varying trend of the 
battery in the charge-discharge cycling test and the 
principle of battery construction, four indicators are 
proposed to evaluate the comprehensive state of the 
battery, which effectively quantifies the health stage and 
thermal safety degree of the battery in the whole life 
cycle.  

3) Using the time series convolutional neural 
network combining the multi-task learning method to 
establish a comprehensive early warning model, the 
MAE in SOC, SOH, and temperature estimation are 
1.37%, 0.95%, and 1.01%, respectively, which is also 
highly universal and can be generalized to a variety of 
application scenarios. 

4) Compared with other similar traditional machine 
learning models, the HTCN model proposed in this paper 
performs best in the three estimation tasks of SOT, SOC 
and SOH, which shows the effectiveness and 
advancement of the design. 
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