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ABSTRACT 
  With increasing digitization for constructing 

intelligent energy systems, automated data processing is 
moving more and more into focus. Gaps in the recorded 
data pose a central problem for further processing 
instances. This work systematically investigates which 
methods are suitable for the imputation of data gaps of 
different sizes. It tackles the imputation performance’s 
influence on overlying applications, such as load 
forecasting and total energy determination. The 
presented method is applied to four datasets of 
compressors of industrial. Based on these Use Case’s 
evaluation results, recommendations for action are 
derived. Gap sizes should be considered when choosing 
an imputation method to minimize imputation error. For 
load forecasting, the prediction error correlates with the 
imputation error in certain missingness scenarios. Energy 
consumption analysis on the imputed data yields good 
results due to a balanced ratio of over- and 
undershooting of the imputation error. 
 
Keywords: data imputation, automation, intelligent 
energy system, industrial energy system, data pre-
processing, load forecasting 

NONMENCLATURE 

Abbreviations  

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

 

1. INTRODUCTION 
According to the German Federal Ministry for 

Economic Affairs and Energy study, which examined 
three scenarios to determine the techno-economic 

impact of different paths to decarbonizing the energy 
system and making Germany greenhouse gas neutral by 
2050, the increased use of renewable electricity and 
energy efficiency play a key role [1]. Energy load data 
plays an essential role in various aspects such as energy 
load forecasting, efficiency improvements, and 
determining energetic transparency in order to be able 
to determine carbon emissions aggregated in the factory 
or product-specific. However, gaps in energy load data 
pose significant challenges in these tasks. Appropriate 
data preprocessing steps, including the application of 
reliable imputation methods are necessary. The effective 
handling of gaps in energy load data ensures reliable and 
complete datasets that are fundamental for efficient 
load management in modern industrial energy systems, 
contributing to increased energy flexibility and the 
transition to renewable energy sources. 

This study investigates the research question of how 
the proportion and distribution of missing values and the 
chosen imputation method influence the quality of 
subsequent use cases that build on the imputed data.  

1.1 Related Work 

The performance of load management mainly 
depends on the data quality. However, missing data in 
energy time series is not uncommon [2]. One way to 
handle missing data is imputation. Sridevi et al. [3] 
propose an autoregressive-model-based missing value 
imputation, particularly effective when a time point is 
mainly or entirely missing. Kanda et al. [4] inserted data 
from similar meters in the missing periods before 
implementing a probabilistic load forecast in the 
GEFCom2017 final match competition. Lee et al. [5] 
introduced an imputation method using both univariate 
and multivariate imputation techniques combining 
spline interpolation and Expectation Maximization based 
on maximum likelihood estimation. Ryu et al. [6] applied 
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a denoising autoencoder for imputation on smart meter 
data with different missingness patterns, like random, 
block-wise, with different configurations and predefined 
missing scenarios. Khan et al. [7] presented a hybrid 
energy-forecasting model based on three machine-
learning algorithms. Weber et al. [8] described a copy-
paste imputation method in which gaps in smart meter 
data were eliminated by copying and scaling values from 
days with the lowest dissimilarity according to difference 
distance metrics. To conclude, related work has 
examined possible solutions for handling missing data in 
time series, particularly focusing on electric load data, 
involving both new and existing imputation methods. 

1.2 Contributions 

This paper investigates the effect of the proportion 
and distribution of missing values and the chosen 
imputation method on the usability of the dataset for 
further analysis. Therefore, the study introduces a simple 
method for artificially creating, imputing, and evaluating 
gaps in predefined scenarios. 

Through the systematic comparison of the quality of 
use cases built on four real-world electric load time series 
datasets imputed with six easily implementable 
imputation methods this study provides valuable 
guidance for selecting appropriate imputation methods, 
considering both the missingness scenario and the 
purpose of the analysis. 

 
The rest of this paper is structured as follows. The 

gap creation, imputation, and evaluation methodology 
are introduced briefly in Section 2 and supplemented 
with concrete dataset description and implementation 
details in Section 3. Section 4 summarizes the resulting 
findings, followed by a substantive discussion in chapter 
5. The paper ends with a short summary in Section 6. 

2. METHODOLOGY 

To systematically investigate the imputation 
methods’ performance and the impact of different types 
of gaps, the following three-step approach, summarized 
in Figure 1, is presented: First, gaps are systematically 
generated on a complete dataset, which are then 
repaired by the models. The resulting time series are 
evaluated in three scenarios to assess performance. 

2.1 Gap Generation 

Gaps with varying frequency and in different sizes 
were introduced randomly into the complete datasets. 

2.2 Gap Filling 

To address the gaps created in the previous steps, 
six distinct imputation methods were employed in this 
step. 

2.3 Evaluation 

This module evaluates the methods by comparing 
the imputed time series to the original, gap-free version. 
Initially, the proximity between the imputed load curves 
to the actual values was evaluated solely on the created 
gaps. This comparison focused on how well the imputed 
values capture the actual values. Additionally, two 
practical scenarios were examined: first, the comparison 
of load forecasting performance, and second, the 
contrast in the total energy consumption calculated 
using imputed versus the actual data. 

3. USE CASES 

3.1 Used Datasets 

Four electricity load datasets recorded at companies 
from the manufacturing sector are used for evaluation, 
which will be enumerated 1-4 from now. The profiles are 
recorded from a smart meter of air pressure generators. 
The temporal resolution was 1 minute. 

 
Fig. 1. The overall methodology  
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The datasets exhibit temporal characteristics. For 
instance, the energy consumption scaled between 0 and 
1 in dataset 4 is displayed in Figure 2. Notably, energy 
consumption on weekends and during nighttime shows 
a substantial reduction compared to workdays, 
indicating reduced operations or downtime during these 
periods. Between January and March, the decrease in 
energy consumption at night is less prominent, while 
during other periods, it nearly reaches zero, suggesting 
variations in operational patterns through time. 

3.2 Implementation 

Our primary goal in this study was to assess the 
impact of the imputation algorithm on several aspects: 
the proximity of imputed values to the actual values and 
the performance of subsequent scenarios on the 
imputed data. To compare the results with complete 
data, first, we selected four datasets with a possibly long 
interval without or with minimal proportion of missing 
values. For all four selected datasets we defined an 
identical, 206 days long time interval, where the 
proportion of missing values were below 0.03%. These 
missing values were imputed with the values from a 
week before. 

For gap creation, we introduced gaps into complete 
datasets through nine different missingness scenarios. 
These scenarios comprise datasets with varying 
percentages of missing values (1%, 5%, and 10%) and 
gaps of different sizes: small (1-10 minutes), middle (10-
60 minutes), large (60 minutes to 1 day) and mixed (1 

minute to 1 day). The length of the gaps was assigned 
randomly within the specified ranges, and the gaps were 
randomly distributed across the datasets. For more 
reliable results, the entire process was repeated 5 times, 
permuting the gaps differently for each.  

For gap filling, the gaps created in the previous step 
were imputed using six different imputation methods. 
One of these methods fills the gaps with constant values, 
namely with the last value (Padded Last) before the gap. 
Additionally, we used linear interpolation, Kalman 
smoothing, and imputation through moving averages 
with the imputeTS R package [9]. Furthermore, two 
methods for imputing values with similar characteristics 
based on calendar features, such as weekday and 
business holidays, were utilized. Once, we imputed 
measurements from the corresponding time window in 
the previous week, capturing reoccurring patterns 
present in the data (Last Week). In the other method 
(KNN), we performed imputation based on values 
measured in the k nearest neighbors for each hour with 
missing values. We searched for the three hours from the 
past data with the smallest Euclidean distance [10] 
calculated on the added calendar features and the total 
energy consumption in the previous six hours. The 
missing values were then imputed as the average in the 
three nearest hours. 

For the metrical evaluation, i.e., to assess the 
proximity of the imputed values to the actual values, the 

mean absolute error (MAE) was calculated for the 
imputed gaps. 

 
Fig. 2. Energy consumption overall, daily and weekly. The load was normalized to [0,1]  
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For the forecast evaluation, the following additional 
features were added: periodic calendar and time-series 
information (month, day, day of week, relative day 
minute, week of year, quarter), holiday information 
(holidays, bridging days, weekend flags), and lagged 
values (one hour, one day, one week). After train/test 
splitting and normalization, four one-hour-ahead (60 
steps) models (namely Linear and Lasso Regression, 
Random Forest, and Decision Tree Regressor) were 
trained in a k-fold (k=5) cross-validation setting. The 
prediction quality was compared through the MAPE 
metric, which is well-interpretable and commonly used. 

Also, we measured the proportion of overshoots in 
error and the proportion of total energy consumption to 
the actual energy consumption (consumption 
evaluation). These two additional metrics were 
employed to determine how well the imputed data aligns 
with the actual energy consumption patterns. 

For each dataset, the calculations for the three 
evaluations were performed with the described four 
missingness proportions and three gap sizes for the five 
gap permutations, resulting in 240 cases, each of which 
tested all six imputation models. To quantify uncertainty, 
for all cases and each evaluation metric, the 95% 
confidence interval for the mean was calculated. 

4. EXPERIMENTAL RESULTS 
In this section, the empirically determined results of 

the three evaluation modules are addressed. 

The results of the metrical evaluation, the MAE 
comparison of the imputation methods applied to the 
different missingness scenarios are presented in Figure 
3. Among the applied methods, Kalman smoothing 
consistently yielded the smallest MAE between real and 
imputed values in almost all cases. For Dataset 4, 
imputation with values from the corresponding time 
window of the previous week and KNN on large and 
mixed-sized gaps performed better, indicating stronger 
temporal patterns in the dataset. Across all four 
datasets, large and mixed-sized gaps resulted in a higher 
MAE with a larger variance between the permutations of 
the gaps, implying greater challenges in the imputation 
in these missingness scenarios.  

The calculated confidence intervals for the mean of 
the MAE revealed that the performance varies across the 
datasets. Notably, all imputation methods performed 
better on dataset 2 and 4 and worse on dataset 1 and 3. 
The latter two not only exhibit higher MAE means on the 
240 cases, but also wider confidence intervals. 

To assess the forecast evaluation, the prediction 
errors were plotted based on the imputation errors of 
the datasets on which they were trained. Also, the 
correlations were determined. Figure 4 shows the results 
for dataset 2 as an example. The plots of the other 

datasets are qualitatively similar and, therefore not 
included. 

Based on the evaluations of the four datasets, the 
following can be stated: With increasing gap size, the 

 
Fig. 3. Results of metric evaluation 
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variance of the prediction model performance increases. 
For small and medium gaps, the prediction error of the 
regression models correlates with the imputation error. 
In all other cases, no significant correlation can be 
detected. The results of mixed gaps are quantitatively 
dominated by the large gaps among them. Their 
distributions are very similar. Overall, the choice of 
model has a significantly higher impact on the prediction 
quality than the choice of imputation. For example, 
prediction with Lasso Regression on dataset 2 in most 
cases yielded to a MAPE lower than with other prediction 
models with a narrower confidence interval. 

For energy consumption evaluation, we considered 
two aspects to answer the question of how imputation 
affects the total energy consumption, i.e., the integral: 
the proportion of over- and undershoots of the imputed 
values on the one hand, and the relative difference 
between the areas as a whole on the other. 

The evaluation of the proportion of overshoots in 
MAE revealed that 77% imputation models achieved a 
proportion between 0.4 and 0.6, indicating that 
approximately half of the difference between the 
imputed and real values was positive, and the other half 
was negative. The total energy consumption calculated 
on the overall range of the imputed data compared to 
the actual values varied between 0.995 and 1.001, 

suggesting a close alignment with the real values. 
Accordingly, the mean of the proportion of total energy 
consumption was consistently near to 1 with a very 
narrow corresponding confidence interval.  

5. DISCUSSION 
In this study, we focused exclusively on the case 

where missing data occurred completely at random [11]. 
However, incorporating the missingness mechanism in 
the imputation design could greatly effect the analysis 
and an important scope for future work. The number of 
datasets and missingness scenarios used in this study 
was limited. Also, there are numerous ways to improve 
load prediction: Besides integrating additional external 
time series, the extension to additional model classes 
would be conceivable in future work.  

6. CONCLUSIONS 
Filling gaps in time series data is a significant step in 

data preprocessing. The question of which models are 
helpful for which types of gaps and the impact of 
imputation on subsequent tasks was investigated.  

For this purpose, a method was introduced to 
systematically create gaps, impute them with different 
models and test them in three realistic evaluation 
settings. To this end, the impact of imputation on curve 

 
Fig. 4. Results of forecast evaluation  



6 

similarity (metric), the load forecasting task, and 
determining total energy consumption was investigated. 
The method was applied to four datasets from the 
industry. Based on the evaluations, the following 
conclusions emerge: 

To minimize the mean imputation error, different 
models for different gap sizes can be recommended. 
However, the concrete choice is company load-specific, 
but overall, the MAE between the real and imputed data 
was often the lowest with Kalman smoothing. The larger 

the gaps, the more difficult the imputation. For load 
forecasting, the choice of the forecasting model has a 
significantly higher impact on the performance than the 
choice of the imputation method. Here, the imputation 
performance correlates with prediction performance for 
small (1-10 minutes) and medium gaps (10- 60 minutes), 
but not in all other cases. In the use case of energy 
consumption analysis, very good results can be obtained 
since over- and undershoots occur in a balanced ratio.
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