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ABSTRACT 

  Carbon dioxide (CO2) contributes to over 50% of 
the enhanced radiative forcing, which in turn leads to 
climate change. Regular monitoring of CO2 emissions is 
commonly required by various governments for strategic 
management purposes. However, the conventional self-
reporting mechanism heavily relies on reporting parties, 
making it less efficient and subjective. This study 
proposes a direct method to estimate the CO2 emissions 
using satellite-based column-averaged mole fractions of 
CO2 (XCO2) retrievals. To account for spatial and 
temporal variability, the study adopts the geographically 
and temporally weighted regression (GTWR) model. The 
results show high consistency, indicating the potential of 
using satellite-based data to track anthropogenic 
emissions with more frequent and extensive coverage. 
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NONMENCLATURE 
Abbreviations  
AT Air Temperature 
CO2 Carbon dioxide 
GHG Greenhouse Gas  

GTWR Geographically and Temporally 
Weighted Regression 

MB Mean Bias 
OCO-2 Orbiting Carbon Observatory-2 
TCWV Total Column Water Vapor 

UNFCCC UN Framework Convention on 
Climate Change 

WS Wind Speed 

XCO2 
column averaged CO2 dry air mole 
fraction of CO2 

 

1. INTRODUCTION 
The concentration of CO2 has steadily risen in the 

past few decades as a result of human activities, 
especially from fossil fuel combustions [1]–[3]. To foster 
a sustainable low-carbon economy, the Paris Agreement 
of UN Framework Convention on Climate Change 
(UNFCCC) mandates the monitoring of anthropogenic 
greenhouse gas (GHG) emissions and the 
implementation of mitigation commitments to reduce 
carbon emissions. It is crucial for governments to have 
reliable statistics on CO2 emissions to assess progress in 
mitigation efforts [4]. 

Ground-based observations offer a comprehensive 
understanding of the growth rate and variation trends of 
atmospheric CO2 [5], [6]. However, sparse nature of the 
observation network limits the accurate inference of 
global-scale carbon emissions. “Bottom-up” inventories 
are fundamental for managing CO2 emissions at various 
levels, but their quality varies among and within 
reporting parties [7], [8]. The conventional “top-down” 
approach often relies on satellite measurements as 
proxies to disaggregate consumption statistics, which 

 
Fig. 1. Mean of ΔXCO2 data obtained from OCO-2 during 

201409 – 201912. 
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poses challenges in ensuring the accuracy and 
consistency of estimation results [9].  

Satellite-based remote sensing observations offer 
additional measurements to the existing surface-based 
greenhouse gas monitoring network, enabling the 
estimation of surface fluxes of CO2 and other greenhouse 
gases on regional scales worldwide [10], [11]. The 
column averaged CO2 dry air mole fraction of CO2 (XCO2) 
was calculated using data from various satellite missions 
to estimate anthropogenic emissions [12], [13]. For 
example, cluster analysis was performed on the 
enhanced XCO2 (ΔXCO2) extracted from the Orbiting 
Carbon Observatory-2 (OCO-2), revealing a positive 
correlation between CO2 and emission inventories [14]. 
Multiple linear regression model [15] and general 
regression neural network model were proposed to 
estimate anthropogenic CO2 emissions from satellite-
based observations. 

Despite decades of research on carbon monitoring, 
significant uncertainties persist in measuring global 
carbon emissions. Here a reliable estimation on 
atmospheric CO2 emission was proposed to estimate 
global anthropogenic emissions with multi-year XCO2 
data extracted from OCO-2. Moreover, the 
geographically and temporally weighted regression 
model is utilized to simulate the relationship between 
ΔXCO2 and anthropogenic emissions with localized 
correction [16]. The main goal of this study is to develop 

an objective approach to directly estimate CO2 emissions 
from satellite-based measurement on CO2 amount.   

2. MATERIALS  

2.1 XCO2 

NASA’s OCO-2 is one of the most popular satellites 
designed to monitor CO2 variations from space [17], [18]. 
It was launched into a sun-synchronous orbit in 2014, 
aiming to reduce uncertainties in the spatial-temporal 
distribution of biospheric carbon fluxes on regional 
scales. It measures the solar backscattered radiance in 
the near infrared (NIR) and shortwave infrared (SWIR), 
including the O2-A band at 760 nm, the weak CO2 band at 
around 1610 nm, and the strong CO2 band at around 
2060 nm. The OCO-2 is operated in a near-push-broom 
style with a spatial resolution at around 1.29 km x 2.25 
km [18]. The validation on OCO-2 XCO2product against 
ground-based Total Carbon Column Observing Network 
(TCCON) indicate an uncertainty of 1.3 ppm [19]. Here 
we adopted the OCO-2 L2 bias-corrected XCO2 product 
(OCO2_L2_Lite_FB_10r) and re-grided to a spatial 
resolution of 0.02 x 0.02 degrees future analysis.  

2.2 Ancillary data 

The atmospheric conditions, such as total column 
water vapor (TCWV), air temperature (AT), local wind 

 
 

Fig. 2. Flowchart of anthropogenic emissions estimation using ΔXCO2 data obtained from OCO-2  
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speed (WS), and vertical velocity from ERA5 were 
obtained as ancillary data in the estimation process.  

ERA5 is the global climate and weather reanalysis 
developed by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), and it integrates model 
simulations with observational data [20]. The local wind 
field was employed to account for the atmospheric 
movement in the horizontal direction. More specifically, 
the average wind speeds (WS) at 1000, 975, and 950 hPa 
were calculated to approximate the wind below 500 m 
[21].  

Large-scale atmospheric circulation is another 
driving force for regional changes of atmospheric 
concentration. The vertical velocity at 500 hPa (w500) 
was utilized as the proxy of large-scale circulation [22].  

The bottom-up inventory of CO2 emissions of ODIAC 
is a global high-resolution emissions data product for 
fossil fuel carbon dioxide emissions commonly adopted 
as reference data on CO2 emissions [23]. This dataset 
utilizes datasets from multiple resources, including 
energy statistics, emissions inventories, and satellite 
observations, to provide detailed picture of CO2 
emissions. The ODIAC were employed as a reference for 
CO2 emissions for model development and validation 
analysis. 

Notably, all datasets were re-grided into 0.02 x 0.02 
degrees to align with the data obtained from remote 
sensing satellite. 

3. METHODOLOGY 
This study proposed a direct estimation approach to 

anthropogenic CO2 emissions with XCO2 data obtained 
from OCO-2.  

While the anthropogenic emissions only account for 
a small percentage of carbon fluxes, identifying the CO2 
fluxes arising from natural sources and anthropogenic 
emissions is critical. To enhance the observation signals 
and isolate the anthropogenic emissions from CO2 
columns, the monthly median from the study area was 
subtracted as the background CO2 fluxes [14]. The XCO2 
anomaly (ΔXCO2) was derived as follows: 

Δ𝑋𝐶𝑂! =	𝑋𝐶𝑂!(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)
− 𝑋𝐶𝑂!(𝑚𝑜𝑛𝑡ℎ𝑙𝑦	𝑚𝑒𝑑𝑖𝑎𝑛) 

(1) 

This step detrends the XCO2 data while reducing the 
impact of potential regional-scale biases in the OCO-2 
product. 

Atmospheric transport is one of the most critical 
elements in estimating CO2 emissions. In this study, the 
wind speed is utilized to indicate the atmospheric 
movement in the horizontal directions, and the vertical 
velocity is used to identify the atmospheric movement in 
the vertical directions. In addition, the near-surface air 

temperature and humidity are also included in the model 
development.  

To capture the spatiotemporal heterogeneity 
between ΔXCO2 and CO2 emissions, the geographically 
and temporally weighted regression (GTWR) model is 
adopted in this research [16]. The model estimates local 
regression coefficients for each observation by 
considering the neighboring observations within a 
specified bandwidth. This allows for the modeling of 
spatially varying relationships between the variables. The 
estimation model could be expressed as:  

𝐴𝐸" = 𝛽#(𝜇" , 𝜈" , 𝑡") + 𝛽$(𝜇" , 𝜈" , 𝑡") × Δ𝑋𝐶𝑂!"
+ 𝛽!(𝜇" , 𝜈" , 𝑡") × 𝜔500"
+ 𝛽%(𝜇" , 𝜈" , 𝑡") ×𝑊𝑆"
+ 𝛽&(𝜇" , 𝜈" , 𝑡") × 𝐴𝑇"
+ 𝛽'(𝜇" , 𝜈" , 𝑡") × 𝑇𝐶𝑊𝑉" + 𝜀" 

(2) 

where 𝐴𝐸!  are the monthly anthropogenic emissions 
of sample 𝑖  at location (𝜇! , 𝜈!)  at time 𝑡! . 𝛽"  is the 
intercept at location (𝜇! , 𝜈!)  at time 𝑡! . 𝛽#–𝛽$  denote 
the location-and-time-specific slopes for ΔXCO2 
observed from OCO-2, w500, WS, AT, and TCWV, 
respectively. 𝜀!  represents the offset. 

 
Fig. 3. Scatter plot of anthropogenic emissions estimated 

from OCO-2 and the collocated ODIAC product from 201409 
to 201912 for (a) the training dataset and (b) the testing 

dataset. 
 

(a)

(b)
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A total of 2,894,275 groups of valid collocated 
samples are obtained during the observation period at 
the research area (latitude: 15 °N ~ 55 °N，longitude: 
70 °E ~ 135 °E). The bootstrap resampling method is used 
to separate the dataset into subsets for model training 
(~70%, 315,000 samples) and testing (~30%, 135,954 
samples). The purpose of this resampling step was to 
align datasets into separate training and testing subsets, 
ensuring independence, and minimizing the influence of 
the diverse spatial distribution of data points and 
potential biases in satellite observations. 

4. RESULTS AND DISCUSSIONS 
The monthly anthropogenic emissions are estimated 

using the GTWR model with the ΔXCO2 extracted from 
OCO-2 XCO2 product. To reduce the computational time 
and computer memory, the analysis was conducted with 
spatial resolution of 0.5 degree.  

The cross validation is conducted for the newly 
estimated dataset. The scatter plots of CO2 emissions 
from satellite-based estimation and the collocated 
ODIAC product from 201409 to 201912 are presented in 
Figure 3. The R2 for the training and testing subsets are 
0.449 and 0.458, respectively.  

The characteristics of CO2 emission are investigated 
using the estimated data. The mean bias (MB) between 
the satellite-based estimation and the ODIAC inventory 
are calculated: 

𝑀𝐵 =
1
𝑛I(𝐴𝐸()*"+,*(- − 𝐴𝐸./012)

3

"4$

 (3) 

where n denotes the number of sample size, the 
𝐴𝐸%&'!()'%*  is the estimation results, and the	𝐴𝐸+,-./  is 
the data obtained from ODIAC inventory. 

As the distribution map of satellite-based estimation 
shown in Figure 4 (a), emission hotspots are observed in 

areas such as the Beijing-Tianjin-Hebei province cluster 
and Yangtze River Delta area. The MB shown in Figure 4 
(b) indicate overestimation in central China and 
underestimation in eastern China. 

To summarize, this study successfully demonstrated 
a practical technique for direct estimating CO2 emissions 
using satellite-based observations of column amount 
CO2. The validation results indicate that the proposed 
estimation approach is reliable, both in terms of spatial 
and temporal aspects. These findings are significant for 
the utilization of CO2 satellite data in independently 
monitoring CO2 emissions at different levels. 
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Fig. 4. Distribution map of the (a) estimated CO2 emission obtained from OCO-2 during 201409 – 201912, (b) mean bias between 
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