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ABSTRACT 
Tight oil reservoirs are mainly developed by water 

injection. The conventional method could not effectively 
characterize the sand body connectivity between oil and 
water wells since it only uses static geological 
parameters or dynamic production data to identify the 
connectivity between wells. In this paper, a novel 
machine learning evaluation method for inter-well sand 
body connectivity using both static geological and 
dynamic production data is constructed. This method is 
based on the CatBoost algorithm. Three types of sand 
body connectivity are classified by analysis of four 
geological factors including porosity, permeability, shale 
volume and net-to-gross ratio, and three dynamic 
production factors including oil production total (OPT), 
liquid production total (LPT) and water injection total 
(WIT). Finally, the novel method proposed in this paper 
is applied to predict the sand body connectivity between 
oil and water wells using the data from a tight oil 
reservoir located in the Ordos Basin, China. The results 
show that the proposed method can improve the 
forecast accuracy of inter-well sand body connectivity 
from 50% to 85%. 
 
Keywords: Tight oil reservoir; Sand body connectivity; 
CatBoost model; Machine Learning Evaluation Method; 
Parameters optimization 
 

NONMENCLATURE 

Symbols  

a Prior term weight 

i Number of trees 

j Return to leaf node region 
k Number of leaf nodes 
n Parameter number 

P Prior value 
x Normalized data 
x* Data before normalization 

x* 
min 

The minimum value of the data before 
normalization 

x* 
max 

The maximum value of the data before 
normalization 

x
__

i 
The average value of the I-th feature over 
the entire dataset 

x
__

i
(j) 

The average value of the I-th feature on a 
class j dataset 

x
~

k,i
(j) 

The eigenvalue of the I-th feature on the 
k-th sample point of class j 

1. INTRODUCTION 
Tight oil reservoirs have been the key of crude oil 

production in the future because of the exhaustion of 
traditional petroleum resources[1]. Tight oil reservoirs are 
mainly developed by complement producing energy 
using water injection. However, it is challenging to 
accurately divide sub-layers and create effective 
displacement due to reservoir heterogeneity and 
unknown sand-body connectivity between oil and water 
wells. 

The reasonable fine division of sub-layers, which is 
based on the accurate characterization of sand body 
connectivity, is very important for the development of 
tight oil reservoirs. The empirical technique of the 
division of sub-layers, analysis method of oilfield static 
geology parameter, the analysis method of dynamic 
production data, the stratal slice method, the machine 
learning method, etc. are the primary prediction 
methods for sand body connectivity. The machine 
learning method can be used to predict samples with 
unknown sand body connectivity by training and learning 
from samples with known sand body connectivity. 
Particularly, the Catboost algorithm, one of the machine 
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learning methods, has the advantages of low sample 
demand, high training accuracy, quick calculation speed, 
and high training result accuracy. Allen[2],[3] originally 
proposed the idea and theory of the crucial net-to-gross 
ratio value and established the probability model of sand 
body connection, emphasizing that the connectivity of 
sand bodies is impacted by the geometry of sand bodies. 
In the experiment, Hovadik[4] came to the conclusion that 
connectivity increased significantly with increasing net-
to-gross ratio within a specific data range, and the curve 
of connectivity vs. net-to-gross ratio was shape of "S". 
Based on the porous flow theory, King P.R.[5] has focused 
on the spatial connectivity of complex sand bodies. Both 
present meander river sediments and prehistoric fluvial 
reservoir outcrops were described hierarchically by 
Andrew D. Miall[6]. A three-dimensional spatial 
simulation model was established by Paola C. and Mohrig 
D.[7] taking into account the thickness of various reservoir 
sand bodies. Thin and narrow channel outcrops on the 
surface would nonetheless offer geological data for the 
description of sand bodies in subsurface rivers, according 
to Eschard R., Lemouzy P., Bacchiana C.[8] et al. To 
describe the sand bodies, Webb E. K. and Davis J.M.[9] 
proposed a series of simulation methods for research on 
the paleogeomorphic environment and sedimentary 
channel of the basin. The net-to-gross ratio model and 
the numerical simulation model were combined into a 
new model, which David K.L. and Hovadik J.[10] then used 
to carry on statistical calculations on the values of 
various net-to-gross ratios. By examining the 
sedimentary characteristics and evolution rules of multi-
stage single sand bodies, Minh N.H.[11] determined the 
distribution characteristics and scale range of sand 
bodies. When the net-to-gross ratio is less than 20%, the 
connectivity is weak, according to Pranter M.J. and 
Sommer N.K.[12]. The connectivity increases quickly when 
the net-to-gross ratio is more than 30%. In order to 
characterize the inter-well sand body connectivity of 
actual oil fields, Ford G.L. and Pyles D.R.[13] developed a 
fine sand body model for complex block reservoirs of 
fluvial facies. A modeling method with a compression 
algorithm and multi-point statistics (MPS) was proposed 
by Walsh D. A. and Manzocchi T.[14] to create a system 
model with a high net-to-gross ratio and low 
connectivity. In order to construct a forward formation 
model that takes into account outcrop and subterranean 
river systems, Colombera L. and Mountney N. P.[15] 
incorporated matrix and fracture model data from 
numerous river systems, quantified fracture aperture, 
and highlighted the coupling relationship between river 
channels and fractures. 

The objective of this paper is to establish a 
evaluation method of the sand-body connectivity of tight 
oil reservoirs based on the CatBoost algorithm, which 
could improve the prediction accuracy and efficiency. 

2. METHODOLOGY  

2.1 CatBoost model 

The CatBoost algorithm, which could handle 
categorical variables, has low dependence on 
hyperparameters and good accuracy, is typically used to 
address the issue of efficiently processing categorical 
information, which is shown in Fig. 1. Through preceding 
terms, CatBoost lessens the negative effects of noise and 
low-frequency data, and its basic formula is as follows: 
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Fig. 1. Schematic diagram of CatBoost algorithm 

2.2 Optimization method of parameters 

In this paper, the continuous quantitative 
characterization problem was changed into a qualitative 
analysis model and classification, and it defines sand 
body connection in terms of sand body connectivity 
judgment. The connectivity of the sand body is classified 
into three levels: level I, which indicates strong 
connectivity; level II, which indicates moderate 
connectivity; and level III, which indicates weak 
connectivity. The schematic diagram of different 
connectivity types are shown in Figs. 2 (a)–(c). 
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(b) 

 
(c) 

Fig. 2. Sand body connectivity evaluation sample diagram. (a) 
Sand body connectivity is strong; (b) Sand body connectivity 

is moderate; (c) Sand body connectivity is weak. 

According to geological factors including reservoir 
physical characteristics, sand body distribution and 
heterogeneity, which are reflected in OPT, LPT, water cut 
increasing rate (WCIR), and WIT, the sand body 
connectivities are totally different. Therefore, it can be 
forecasted using static parameters like porosity, 
permeability, width-to-thickness ratio, shale volume, 
net-to-gross ratio, and permeability variation coefficient, 
as well as dynamic parameters like OPT, LPT, WCIR, and 
WIT. More input features may result in more thorough 
information, but in fact, too many features might slow 
machine learning, decrease prediction accuracy, and 
degrade model performance. Therefore, it is essential to 
optimize the static and dynamic parameters that impact 
the connectivity of the sand body while retaining the 
model's accuracy. 

The static and dynamic parameters associated with 
sand body connectivity were optimized using the 
enhanced F-score method. Give an explanation of the 

training sample set Xk∈Rm (k = 1, 2,..., n); l (l≥2) is the 
number of sample categories, and nj is the number of 
samples of class j, where j = 1, 2,..., l. The I-th feature's F-
score in the training sample is then defined as follows: 
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The higher the F-score number, the bigger the 
difference between categories and the smaller the 
difference within categories, meaning the feature could 
better differentiate itself according to the standard of 
classification. 

2.3 Data set construction 

Each set of sand bodies corresponding to oil wells 
and water wells can be regarded as an independent 
dataset. The input variables of samples are made up of 
both static and dynamic parameters. The results of 
logging interpretation make up the static parameters. 
The production parameters obtained by dividing the 
liquid production profile and the water injection profile 
make up the dynamic parameters. Finally, 101 samples 
in total were collected. Fig. 3 shows the flow chart of 
sand body connectivity evaluation using the dynamic and 
static combined based on the CatBoost model. 

It is necessary to normalize the sample data prior to 
training and then use the CatBoost model for training in 
order to increase the convergence speed during training, 
increase the accuracy of the evaluation, and avoid 
operation difficulties and even errors caused by 
unbalanced data distribution, which will affect the 
training results and lead to errors in the subsequent 
results. The data of the sample is limited to 0~1 by the 
normalization formula, and data normalization 
processing can reduce the training computational 
complexity and improve the accuracy of the training 
results. The normalization formula can be expressed by: 

              (3) 

There were 38 Level III samples with poor sand body 
connectivity, 34 Level II samples with medium sand body 
connectivity, and 29 Level I samples with good sand body 
connectivity among them. A training sample set was 
randomly chosen from the 101 samples, consisting of 23 
Level I samples, 28 Level II samples, 29 Level III samples, 
and the remaining 21 samples as test samples. 

 
Fig. 3. Flow chart of sand body connectivity evaluation 

3. RESULTS AND DISCUSSION 

3.1 Optimal selection of dynamic and static parameters 

Figs. 4 (a)–(d) show the F-score values of dynamic 
and static dynamic parameters as well as the correlation 
between the number of parameters and classification 
accuracy rate using the enhanced F-score method. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Optimization results of static and dynamic parameters. 
(a) and (b) are the F-score values of static and dynamic 

parameters, respectively; (c) and (d) are the classification 
accuracy of static and dynamic parameters, respectively. 

The results show that X = {porosity, permeability, 
shale volume, net-to-gross ratio, OPT, LPT and WIT}. 
When the dynamic and static parameters are both used 
to evaluate sand body connectivity, the classification 
accuracy of sand body connectivity is greatly increased 
compared to only using static parameters. Therefore, the 

evaluation method of sand body connectivity, both using 
dynamic and static parameters, is more complete and 
precise. 

3.2 Prediction results of sand body connectivity 

The prediction results of sand body connectivity 
show that 80 sample sets are trained by the model, with 
a training accuracy rate of 87.5%. The model is then 
tested using the remaining 21 samples, and the 
predicted results are contrasted with the actual sand 
body connectivity, as shown in Fig. 5. Fig. 6 shows the 
confusion matrix heat map of the anticipated results 
based on SPSSPRO. It can be observed from the 
examination of Figs. 5 and 6 show that 18 of the 21 test 
samples agreed with the actual results, and 3 of them 
had incorrect judgments. The accuracy of the prediction 
results of the model proposed in this paper is 
significantly better than the traditional method only 
using static data or experience to predict sand body 
connectivity. In addition, the model proposed in this 
paper has an accuracy of about 85%. 

 
Fig. 5. Comparison of the method proposed in this paper and 

the traditional method 

 

 
Fig. 6. Confusion matrix heat map of CatBoost classification 

test results 

3.3 Method validation 

Oil and water wells are chosen based on the target 
area inter-well sand body connectivity, and the 
prediction results of inter-well sand body connectivity 
are subsequently confirmed based on the dynamics 
between oil and water wells. 
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It is predicted by the CatBoost algorithm that the 
sand body between W1 and W2 has Level I connectivity. 
The curves of W1 water injection rate and W2 dynamic 
production performance, which are respectively shown 
in Figs. 7 and 8, are analyzed. The results demonstrate 
that the sand body connectivity between W1 and W2 
Wells is strong, validating the efficacy of the method 
proposed in this paper. 

Moreover, the sand body connectivity between W1 
and W2 using the traditional method (only static 
parameters) and the method proposed in this paper 
(both static and dynamic parameters) is evaluated, 
respectively. The results show that the sand body 
connectivity between W1 and W2 is judged to be 
moderate connectivity using the traditional method, 
while it is judged to be strong connectivity using the 
method in this paper. The accuracy of the method 
proposed in this paper is further demonstrated. 

 
Fig. 7. Curve of W1 water injection rate 

 

 
Fig. 8. Curve of W2 dynamic production performance 

 

 
(a) 

 
(b) 

Fig. 9. Analysis of sand body connectivity results. (a) is the 
results of sand body connectivity analyzed by traditional 

methods; (b) is the results of sand body connectivity analyzed 
by the method proposed in this paper. 

3.4 Field application 

In this paper, the data are collected from a tight oil 
reservoir, Ordos Basin, China. According to statistics, 
there are 719 sets of Level I (strong connectivity) out of 
the 2198 sets of single sand bodies in the target area, 
making up 32.7% of all sand body groups. There are 335 
sets of Level II (moderate connectivity), making up 15.2% 
of all sand bodies. There are 1044 sets of Level III (weak 
connectivity), making up 47.5% of all sand bodies. The 
statistical results show that the sand body connectivity 
of the target reservoir is generally not very good. 

Table 1. Statistics on sand body connectivity 

Sand Body Connectivity Quantity  Proportion (%) 

Level I (strong connectivity) 719 32.7 

Level II (moderate connectivity) 335 15.2 

Level III (weak connectivity) 1044 47.5 

The distribution of sand bodies parallel to the 
maximum principal stress direction is examined using the 
connecting well profile of Wells W125 to W131 as an 
example. According to Fig. 10, the distribution of sand 
bodies parallel to the maximum principal stress direction 
is relatively continuous, while the connectivity of those 
from top to bottom is getting poor. 

 
Fig. 10. Connecting well profile of Wells W125 to W131, 

which is parallel to the maximum principal stress direction 

Analysis of the distribution of sand bodies 
perpendicular to the maximum principal stress direction 
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is done using the connecting well profile of Wells W140 
to W146 as an example. According to Fig. 11, the 
distribution of sand bodies perpendicular to the 
maximum principal stress direction is more dispersed. In 
addition, the connectivity of those from top to bottom is 
getting poor. 

 
Fig. 11. Connecting well profile of Wells W140 to W146, 
which is perpendicular to the maximum principal stress 

direction 

4. CONCLUSION 

(1) Through the enhanced F-score method, four 
static parameters are selected, which are porosity, 
permeability, shale volume and net-to-gross ratio, and 
three dynamic parameters, which are oil production 
total, liquid production total and water injection total. 

(2) The sand body connectivity prediction method 
based on the CatBoost model was proposed in this 
paper, which can be used to predict sand body 
connectivity, and the prediction accuracy reached 85%, 
which is better than traditional methods. 

(3) The distribution of sand bodies parallel to the 
maximum principal stress direction is relatively 
continuous, while the distribution of sand bodies 
perpendicular to the maximum principal stress direction 
is more dispersed. In addition, the connectivity of those 
from top to bottom is getting poor. 
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