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ABSTRACT 
  This comprehensive data science analysis of the 

IEA's hydrogen projects database from 2000-2022 
reveals accelerating green hydrogen project growth. The 
descriptive analysis exposes increasing project counts, 
total capacity, and grid integration over time and by 
geography. Key countries leading in projects and 
capacities are Germany, Australia, the USA, France, 
Spain, and China. Transportation, chemicals, and refining 
dominate end-use applications. Solar, wind, and hydro 
lead renewable feedstocks, with over 50% of future 
capacity from novel electrolysis methods, like SOEC and 
other electrolysis technologies. Germany’s current and 
future projects are electrolysis-based, unlike the USA 
which has a more diversified approach. Clustering 
uncovers project typologies centered on technology, 
status, location, and end-use. Sophisticated deep 
learning forecasting with transformer and RNN models 
predicts massive future growth expansion (MAE 10.19, 
MSE 457.74, R2 0.558). The rigorous methodological 
approach provides unprecedented insights into the swift 
expansion and budding contours of the global hydrogen 
sector. These data-driven models unpack project growth 
dynamics, offering intelligence for policy, research, and 
industry to strategically harness the bourgeoning 
hydrogen economy. Overall, this study thoroughly 
probes the mechanics of green hydrogen project 
development through ampliative modeling of the most 
extensive database available. 
 
Keywords: decarbonization pathways, techno-economic 
analysis, multivariate forecasting, green Hydrogen, 

global clean energy policy, hydrogen value chain 
configuration  
 

NONMENCLATURE 

Abbreviations  

IAE Applied Energy  
MAE Mean Absolute Error 
MSE Mean Squared Error 
ALK Alkaline 
SOEC Solid Oxide Electrolysis Cell 
CCUS Carbon Capture, Utilization, and Storage 
RNN Recurrent Neural Network 
LSTM Long Short-Term Memory 
PEM Proton Exchange Membrane 

Symbols  

R2 Coefficient of determination 
Kt Coefficient of determination 
MW Megawatts 
Nm3/h Cubic meters per hour 

 

1. INTRODUCTION 
The rapid growth of green hydrogen projects globally 

has significant implications for decarbonization efforts 
and the future energy system. Research like [1] views 
Green Hydrogen as a game changer for enabling deep 
decarbonization across industries. Advancements in 
production methods, declining costs, and policy 
incentives have accelerated green H2 project 
development worldwide[2], [3]. However, research into 
the precise dynamics and directionality of this 
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burgeoning project pipeline remains limited. The authors 
in [4] analyzed technology trends, and the ones in[5] 
modeled future cost trajectories., but few studies have 
undertaken a comprehensive techno-economic analysis 
of the projects presently under development. 

This research conducts an integrated assessment of 
global green hydrogen project growth and structure by 
leveraging the IEA’s Hydrogen Projects Database[6]. It 
tracks data on projects for the production of hydrogen 
for energy or climate change-mitigation purposes and 
the development of hydrogen infrastructure, making it a 
valuable resource for this study. 

The study employs multivariate analysis spanning 
descriptive statistics, unsupervised clustering, and deep 
forecasting to derive actionable intelligence on 
developer priorities and investment growth patterns. 
Unsupervised learning methods are becoming essential 
tools for analyzing large amounts of data, as they can 
identify patterns and structures within the data without 
the need for pre-existing labels or classifications[7]. Deep 
time-series clustering, a specific type of unsupervised 
learning, is particularly relevant for analyzing time-
oriented data, such as the growth and development of 
green hydrogen projects over time[8]. Building on works 
like [9] on the application of techno-economic modeling, 
this research undertakes the first integrated data science 
interrogation of historic and planned green H2 projects 
worldwide. Techno-economic modeling is a valuable tool 
for assessing the economic feasibility and potential cost 
trajectories of hydrogen infrastructure 
development[10]. Meanwhile, geospatial analytics can 
provide insights into the spatial distribution and regional 
trends of these projects[11]. 

This research conducts a multifaceted interrogation 
of green hydrogen project development by leveraging 
the IEA’s database. The integrated analytical approach 
reveals key insights across several dimensions: 

1. The project growth trend analysis identifies 
Germany, Australia, and the USA as leaders in total 
project counts, while exposing China as the sole Asian 
nation in the top 10 countries. It further assesses project 
progress across lifecycle stages, finding over 50% remain 
in early feasibility or planning globally. Transportation, 
power, and chemicals are shown to be priority end-use 
applications. 

2. Capacity expansion modeling forecasts growth 
trajectories for production capacity metrics by country. 
Concentrations in chemicals, refining, and heavy industry 
are highlighted. Over 50% of the projected 2050 capacity 
is attributed to novel electrolysis methods beyond 
traditional alkaline, PEM, and SOEC. 

3. Production technology assessment compares 
maturity and adoption trends across renewable 
feedstocks and electrolysis technologies by region. It 
reveals the rising application of SOEC and innovative 
approaches. 

4. Sophisticated deep learning models effectively 
predict massive future growth based on current 
expansion signals and trajectories. 

5. Project clustering analysis stratifies 
understanding of project types across technology, locale, 
stage, and other attributes – enabling customized 
insights. 

 

2. METHODOLOGY 

2.1 Dataset 

This research utilizes the IEA’s Hydrogen Projects 
Database, the most extensive open-access global 
collection profiling developments in hydrogen energy 
production, transportation, storage, and end-use 
applications. The database spans more than 1900 
projects initiated between 2000-2022, with information 
contributed by the IEA Hydrogen Technology 
Collaboration Programme and industry stakeholders. It 
covers 75 attributes including Location (country, region), 
Capacity details (installed, planned) across metrics (MW 
electrolyzer, kt H2/yr), Production pathway (electrolysis, 
fossil CCUS, other), Technology and feedstock specifics, 
Operational status (planning, construction, operation), 
Renewable inputs (solar, wind, hydro), End-use sector 
(transportation, ammonia, power gen), Developers and 
partners. The compilation includes executed, actively 
under construction, and proposed ventures exploring 
roles for hydrogen in decarbonization across 
transportation, power generation, heating, industrial 
processes, and innovative fuels and feedstocks. The 
repository offers unprecedented visibility into the global 
landscape of hydrogen technological maturity, 
geographic distribution, subsector integration, and 
prospective growth frontiers. As the IEA states, this living 
database intends to serve policymakers, researchers, 
and corporations seeking to strategically support the 
bourgeoning hydrogen economy amid the energy 
transition. 

 

2.2  Data preprocessing 

Preprocessing ensured data integrity for effective 
modeling. The raw project database encompassing 75 
attributes required substantial preprocessing to enable 
effective modeling. First, missing values were filled and 
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features engineered such as project start year derived 
from date online. Exploratory analysis identified 17 
continuous variables related to capacity metrics and end-
use sectors and 3 categorical variables - status, 
production technology, and country - as key inputs. 
Aggregation generated time-series annual summaries of 
capacity sums and most common categories. One-hot 
encoding converted text categories to binary variables. 
Standardization normalized the scale of continuous 
inputs. These processed features were shaped into 
multivariate time series samples paired with project 
count target labels for supervised learning. 

An 80/20 stratified split created distinct training and test 
partitions. The time-series data samples were reshaped 
into three-dimensional arrays with one timestep per 
annual record to match the input style expected by the 
RNN and Transformer neural architectures. This 
comprehensive pipeline ensures clean, consistent 
features scaled for complex deep forecasting while 
avoiding data leakage. The resulting preprocessed 
dataset provides an appropriate foundation for 
descriptive analytics, clustering, and predictive 
modeling. 

2.3 Descriptive analysis 

A principled data science workflow was applied to 
understand and prepare the data. Descriptive analysis 
using pandas explored univariate relationships to 
uncover attribute relevance. The countries were 
transformed from text encodings to one-hot vectors to 
facilitate geo-focused learning tasks. Dimensional 
capacity attributes were filtered for non-null records and 
converted to numeric types. Cumulative sums of key 
metrics like total capacity (MWel, nm3/h, kt/y) and 
project counts, were calculated over time, and various 
combinations were plotted to analyze emerging trends in 
areas like deployment growth, technology mixes, and 
geographic distributions over the period. 

2.4 K-means clustering 

Unsupervised K-means clustering was employed to 
group the projects into homogeneous profiles based on 
patterns in their attributes. The K-means algorithm aims 
to partition the observations into K clusters in which each 
observation belongs to the cluster with the nearest 
mean. First, the categorical features were one-hot 
encoded to transform them into a numeric format 
accepted by the algorithm. Then, the numerical capacity 
and end-use features were standardized using a 
StandardScaler to put them on a similar scale. These 
preprocessed features were then concatenated into a 

single X input matrix. Missing values in X were imputed 
using mean imputation. KMeans was then fit on X with 
K=5 clusters chosen based on domain knowledge of 
potential project types. Cluster labels were added to the 
original data frame.  

The cluster centroids and within-cluster average 
profiles were examined to understand each cluster's 
defining characteristics. Dimensionality reduction 
techniques PCA and t-SNE projected the high-D data into 
2D and 3D for visualizing the learned clusters. 
Specifically, these projections revealed how the 
observations were partitioned in the lower dimensional 
space. Additionally, the silhouette score was calculated 
to evaluate clustering quality based on how well samples 
are matched to their cluster versus neighboring clusters.  

Overall, this unsupervised approach automatically 
discovered latent groups within the projects defined by 
underlying patterns in their multifaceted attributes. The 
identified clusters provide a meaningful way to profile 
different technological configurations and applications 
of hydrogen energy initiatives. 

2.5 RNN and Transformer forecasting models 

The RNN model used an LSTM architecture to 
capture the long-term temporal dependencies in the 
time-series data. The input layer normalized the 
sequences, followed by two LSTM layers of 128 and 64 
units respectively. Dropout of 0.2 was applied after each 
LSTM layer to prevent overfitting during training. A 
Dense layer with 32 units and a ReLU activation function 
extracted higher-level features from the LSTM outputs. 
L2 kernel regularization of 0.01 was used on this layer. 
Finally, a single unit Dense layer served as the output 
layer. The model was compiled using the MSE loss 
function and Adam optimizer with a learning rate of 
0.001. Gradients were calculated and weights updated 
during backpropagation to minimize prediction errors 
over several tested training epochs, using a batch size of 

 
Fig. 1. Top 10 countries by project count  
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2 samples. Layer normalization and recurrent dropout 
helped address the vanishing gradients problem inherent 
to RNNs. The multi-layer LSTM architecture allowed the 
model to learn both short and long-term temporal 
dependencies in the input windows. 

The Transformer used the self-attention mechanism 
rather than recurrent layers. The inputs were embedded 
in a 32-dim space before passing through 8 identical 
encoder blocks. Each block performed multi-head self-
attention over the sequence to relate different positions, 
followed by skip connections and layer normalization. 
Feedforward fully connected layers with ReLU 
activations extracted features from the self-attention 
outputs. The encoder-only design mapped the inputs to 
hidden representations without predicting targets at 
each timestep. A dropout of 0.2 regularized the network. 
The model was trained similarly to the RNN with AdamW 
and a learning rate of 0.0005. Self-attention allowed the 
Transformer to capture global dependencies rather than 
relying on recurrence like the RNN. 

Both models effectively modeled the temporal 
patterns, with their different architectural designs - 
recurrent layers vs self-attention - capturing 
dependencies in distinct ways for the time series 
forecasting task. 

 

3. EXPERIMENTS AND RESULTS 

3.1 Grow trends 

Exploratory data analysis quantified growth trends 
across key dimensions including project counts, capacity, 
and technology. Filters extracted continuous features 
related to project status, end-uses, capacity, and 
aggregation consolidated metrics by country and year. 
Visualizations included various charts ranking and they 
reveal geographic concentrations and gaps, capacity, and 

technology trends. Cumulative summation models 
tracked installed capacity over historic and future years. 
In summary, data filtering, timed aggregation, and 
multivariate visualization expose expansion trends of the 
emergent green hydrogen project landscape. 

The current status of hydrogen projects provides 
insights into the development of this critical energy 
sector. As shown in Fig. 1, Germany has established the 
largest project portfolio to date, leveraging its expertise 
in developing renewable energy and energy systems. 
Australia and the US closely follow demonstrating 
commitment from industrialized nations. Notably, China 
is the only non-western country in the top 10 countries, 
despite being a relative newcomer, signaling recognition  

 
Fig. 2 Project count per status  

 
 

 
Fig. 3 Project count per country and status  

 
 

 
Fig. 4 Project count per end use  

 
 

 
Fig. 5 Project count by country and per end use  
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of hydrogen's strategic importance for decarbonization 
across key economies. 

A deeper analysis provides context on green 
hydrogen's immaturity. Fig. 2 shows that most projects 
remain in early feasibility/concept phases, underscoring 
nascent deployment ambitions. Feasibility assesses 
initial viability pre-pilot funding while concepts signal 
preliminary design pre-financing, together dominating 
comprehensive data pipelines. In contrast, 
demonstration/operational volumes imply most ideas 
lack piloting to derisk technologies at scale before 
rollout, and limited operations reflect nascent scale-up, 
suggesting ambitions exist but hydrogen may require 
substantial continued support to accelerate progress on 
capacities by addressing hurdles to realization beyond 
concepts/studies. 

 As shown in Fig. 3, Germany leads in operational 
projects reflected in its renewable experience, followed 

by France and somewhat surprisingly China despite 
entering the sector later, pointing to the aggressive of 
early footholds. While feasibility studies still comprise a 
substantial portion across all top countries as expected 
in this nascent technology phase, examination of 
construction suggests imminent growth areas with the 

US, Norway, and China attracting the most underway 
projects, indicating where sizable near-term capacity 

additions may come online especially as the US and 
China invest billions[12] in infrastructure with hydrogen 
components, overall reflective of relative experience to 
date for leaders yet substantive feasibility and 

construction activity across major economies indicating 
the landscape may be primed for faster scaling. 

Analysis of project applications by industry as shown 
in Fig. 4 and Fig. 5, reveals transport as the sector with 
the most initiatives, reflecting hydrogen's potential to 
decarbonize hard-to-electrify modes like shipping, 
aviation, and long-haul trucking[13]. Power and grid 
injection make up the next most traction of projects, 
highlighting hydrogen's value for increasing RES 
integration through energy storage[14]. Together, these 
three sectors - transport, power, and ammonia 
production for fertilizer - account for over 60% of 
projects, initially prioritizing decarbonization of 
emissions-intensive activities. 

As depicted in Fig. 6, Fig. 7, and Fig. 8, projected 
future capacities provide insights into both the scale of 
deployments envisioned and the status of planning 
efforts. Australia, France, and Spain have ambitious 
targets to become leaders in installed green hydrogen 
capacity, with plans for 27.5GW, 20.5GW, and 15GW 

 
Fig. 6 Total capacity per country  

 
 

 
Fig. 7 Capacity by technology  

 
 

 
Fig. 8 Capacity by status  

 
 

 
Fig. 9 Capacity per end use  
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respectively by 2030[15]. Reaching these levels would 
require enormous investments in electrolyzer 
manufacturing and renewable energy buildouts to 
supply demand. Strikingly, over 500GW of the projected 
2050 capacity - equivalent to 3000kt/yr or 10000nm3/yr 
- remains in early feasibility and concept planning stages. 

This underscores the tremendous scale of 
deployment needed globally as well as the uncertainties 
regarding long-term technological progress to realize 
projections. The distribution of planned capacities in 
Mwel, Kt H2/y, and nm3 H2/y is globally consistent, with 

"other electrolysis" projects targeting novel methods 
beyond alkaline, PEM, and SOEC holding the largest 
share. Additionally, concept proposals holding the 
greatest total planned capacity followed by feasibility 
studies indicate consistent visioning efforts are 
underway, proving projections for sizable development 
of hydrogen energy projects. 

As shown in Fig. 10, Fig. 11, Fig. 12, and Fig. 13, 
electrolysis technologies are positioned to enable over 
50% of projected 2050 green hydrogen volumes, with 

novel types beyond alkaline and PEM poised to dominate 
projects globally according to comprehensive analyses. 
Specifically, "other electrolysis" constitutes the highest 

share of initiatives, followed by PEM and alkaline 
projects, while SOEC demonstration activity indicates its 
promise. PEM and alkaline are the most implemented in 
current operations, with their maturity 
underscored[16]–[18], whereas SOEC and other novel 
approaches prevailingly remain in earlier feasibility and 
concept planning stages. Examining preferred renewable 
energy inputs confirms solar, offshore wind, onshore 
wind, and hydropower as the most prominent green 
hydrogen production pathways. Insights into country-
level emphases expose Germany's leadership 
predominantly utilizing established alkaline in addition 
to SOEC and PEM in operational projects, aligned with its 

electrolytic focus, contrasting the U.S.'s relatively lower 
electrolysis representation but higher non-electrolytic 
alternative initiatives in line with divergent strategic 
priorities. Collectively, findings underscore the pivotal 
importance of advancing all electrolysis technologies 
commercially. 

 

3.2 Project clusters and attributes 

Unsupervised machine learning provided novel 
insights into global green hydrogen initiatives. K-means 
clustered the multidimensional dataset into five groups 
without preconceptions. Analysis of centroids and 
internal properties elucidated the distinct phenotypes 

 
Fig. 10 Number of projects per technology  

 
 

 
Fig. 11 Number of projects by renewable energy types  

 
 

 
Fig. 12 Project counts per technology and status  

 
 

 
Fig. 13 Project counts per technology and country  

 
 

Table 1 Overview of cluser centroids 

 Technology_ALK Technology_Biomass Technology_Biomass 
w CCUS 

Synfuels CH4 
grid 
inj. 

CH4 
mobility 

0 0.016632 0.006237 2.079002e-03 0.0 0.0 0.0 
1 0.000000 0.000000 0.000000 0.0 0.0 0.0 
2 0.068966 0.012931 2.155172e-03 0.0 0.0 0.0 
3 0.000000 0.000000 0.000000 0.0 0.0 0.0 
4 0.300971 0.031068 2.385245e-18 0.0 0.0 0.0 
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defining each cluster. Manifold learning techniques 
visually represented these separations by embedding the 
high-dimensional space into lower dimensions. 
Examining cluster-specific parameters revealed patterns 
in technologies, development, and applications. Overall, 
this computational analysis revealed the inherent  

structures within this emerging field. Such a systems-
level understanding of clustered architectures can guide 
strategic priorities to optimize the transition to 
widespread green hydrogen adoption across industries. 
Data-driven clustering uncovered informative 
perspectives that may help facilitate large-scale energy 
transformation. 

The cluster analysis reveals five distinct groups of 
green hydrogen projects based on their characteristics. 
Cluster 1 centers around ALK and biomass-based 
production technologies, suggesting a focus on these 
approaches. Cluster 2 stands out for its extremely high 
capacity of over 100 MW, representing the largest mega-
scale projects. Cluster 3 also contains very large projects 

but it is more differentiate by even more capacities than 
Cluster 2. Clusters 0, 2 and 4 show nonzero values for 
multiple end-use applications spanning biofuels, 
synthetic fuels, grid injection, and others, signaling 
diversity in planned applications. 

Meanwhile, Cluster 1 has null values for all end uses 
shown. Finally, while the silhouette score of 0.1576 
indicates reasonably separated groupings, it is not 
exceptionally high, leaving some possibility for overlap 
between clusters. Overall, the analysis demonstrates the 
inherent segmentation of the project landscape 
according to technology pathways, project scale, and 
end-market orientation. Distinct clusters corresponding 
to these themes provide insight into current trends 
shaping the development of the green hydrogen sector. 

3.3 Forecasting accuracy and future trajectories 

3.3.1 RNN 

The hydrogen projects database was loaded and 
preprocessed by one-hot encoding categorical features, 
standardizing numerical features, and aggregating the 
data into a yearly time series profile which was then split 
into training, validation, and test sets. An RNN 
architecture utilizing LSTM units with layer 
normalization, dropout regularization, and 
hyperparameter tuning of LSTM widths/depths and 
dropout rates was developed and trained for 500 to 5000 
epochs on 1D input sequences using Adam optimization 
with validation loss tracking. The best parameters are 
presented in Table 1. Following training, the RNN made 
predictions on blinded test sequences and performance 
was rigorously evaluated using MAE, MSE, and R2 error 
metrics, with true vs predicted plots and loss over epochs 
also generated to qualitatively assess prediction errors 
and convergence, establishing through this systematic 
process an effective recurrent model for capturing 

Table 2 Overview of cluster profiles 

 Mwel Nm3H2/h ktH2/y tCO2captured/y Biofue
ls 

Synf
uels 

CH4 
grid 
inj. 

CH4 
mobili

ty 

0 422.53 1.019089e+05 79.453 1.4133+06 1.0 1.0 1.0 1.0 
1 67000 1.488889e+07 11608 Nan Nan Nan Nan Nan 
2 310.19 9.646703e+04 765.09 1.5670e+06 1.0 1.0 1.0 Nan 
3 11795 2.777305e+06 2165.3 2.0000e+07 Nan 1.0 Nan Nan 
4 29.471 7.218476e+03 6.2228 6.4444e+05 1.0 1.0 1.0 1.0 

 

 
 
 

 
Fig. 15 PCA and t-SNE 3D Cluster  

 
 

 
Fig. 16 RNN true vs predicted  

 
 

 
Fig. 14 PCA and t-SNE Cluster  
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temporal trends in the sector based on the end-to-end 

experimentation covering data processing, model 
development, optimization, and evaluation. 

Several trainings were conducted varying the 
number of epochs and batch size to explore the effect of 
hyperparameters on model performance. The model was 
evaluated using mean absolute error, mean squared 
error, and R2 score computed on the validation set, with 
lower error and higher R2 indicating better performance. 
Results showed slightly better scores for the 3000-epoch 
training with a batch size of 2. Loss plots decreased over 
epochs for training while leveling off near completion, 
and true vs predicted plots (Fig. 16) showed reasonable 
agreement along the identity line. While performance 
was reasonably good and stable across parameters with 
R2 around 0.46, room for improvement remains, 
suggesting further exploration of more complex RNN 
architectures and hyperparameter tuning may be 
needed to achieve stronger time series forecasting 
ability. 

3.3.2 Transformer 

The Transformer architecture consisted of 8 encoder 
blocks with each block containing multi-head attention, 
feedforward, skip connections, and normalization 
sublayers. An embedding layer was used to embed the 
input features. The model was trained on a time series 
dataset split into 80% train and 20% validation sets. 
Several training was done on several parameters and the 
results are in Table 4. Various hyperparameters were 
chosen, including 8 attention heads, 32 units, and a 
0.0002 dropout rate. The trained model was then 

evaluated on a held-out test set to make predictions and 
compute performance metrics such as MAE, MSE, and R2 
score, to analyze the model's predictive ability. 
Additionally, true vs predicted plots on the test set were 
generated to visualize prediction accuracy, and loss 
curves plotting training and validation loss over epochs 
were produced to examine model convergence. 

 
The experiments aimed to develop an end-to-end 

Transformer architecture for time series forecasting and 
analyze its predictive performance and learning behavior 
through evaluation metrics and plots, providing insights 
into how well the model learned patterns in the time 
series data. 

The transformer model outperformed the RNN 
model and the best-performing model configuration was 
with a batch size of 1, run for 1250 epochs. It achieved a 
mean absolute error (MAE) of 10.1859 on the validation 
set. A lower MAE indicates better accuracy in 
predictions. The mean squared error (MSE) was 457.735, 
also showing low error. Most importantly, the R2 score 
was 0.5577, demonstrating a strong fit of the model to 
the variability in the time series data. An R2 score closer 
to 1 is ideal. The plot in Figure 17 displays the actual test 
values alongside the model predictions. We can see a 
close alignment between the predicted and true values, 
clustering around the identity line. This confirms the 
accuracy of the predictions made by the model. The loss 
curve for this model is displayed in Figure 18. The 
validation loss steadily decreases over the 1250 training 
epochs, leveling off near the end, showing that the 
model was still learning from the data. The low validation 
loss achieved suggests the model was not overfitting. 

Table 3 RNN training parameters  

Epochs 
Batch 
Size 

Validation 
Split 

MAE MSE R2 Score 

2000 4 0.2 12.42 592.56 0.4275 

2300 2 0.2 11.80 552.87 0.4658 

2600 4 0.2 11.75 552.82 0.4659 

3000 2 0.2 11.70 553.51 0.4652 

 
 

Table 4 Transformer training parameters  

Epochs 
Batch 
size 

MAE MSE R2 Score 

1300 1 11.02 475.679 0.540 

1150 1 10.92 467.079 0.548 

1250 1 10.18 457.735 0.557 

 
 

 
Fig. 17 Transformer true vs predicted  
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4. DISCUSSION  

4.1 Policy guidance based on gaps and opportunities 
identified 

The analysis revealed several key gaps and 
opportunities that policymakers should consider to help 
accelerate the development of green hydrogen. 
Feasibility and conceptual projects currently dominate 
the pipeline, suggesting deployment ambitions exist but 
many ideas lack piloting to de-risk technologies at scale 
before rollout. Additionally, the majority of planned 
capacity remains in the early feasibility and concept 
planning stages, indicating uncertainties around long-
term technological progress and the tremendous scale of 
deployment needed globally by 2050. Transport, power 
generation, and ammonia production currently comprise 
over 60% of projects, however emerging applications 
such as marine and aviation present major opportunities 
for growth with support. While novel electrolysis 
technologies beyond alkaline and PEM are poised to 
enable over half of projected 2050 volumes, they 
predominantly remain in early feasibility and conceptual 
stages. Increased policy and funding priority for the 
demonstration and commercialization of promising new 
electrolysis technologies could help realize their large 
projected contribution. Coordination between countries 
on issues like shared renewable energy infrastructure, 
cross-border hydrogen transport, and certification 
standards could help maximize efficiencies and cost 
reductions through international collaborations and 
knowledge sharing between frontrunner countries on 
lessons from operational projects. Targeted policies and 
investments in leading markets such as Germany, the US, 
Norway, and China could accelerate near-term capacity 
additions through diverse technology pathways. 

4.2 Limitations: Database Dependencies, Uncertainty 

While the analysis provided valuable insights, there 
are important limitations to acknowledge. As the dataset 
primarily includes announced projects still in the early 
feasibility and planning stages, key details and timelines 
are uncertain, and actual deployment may diverge 
significantly as technologies progress and projects are 
modified or canceled. Additionally, the findings rely on a 
dataset that has inherent limitations in its completeness 
and accuracy, as not all hydrogen projects worldwide 
have necessarily been captured. Important sub-national 
variations or qualitative factors influencing development 
trajectories are also difficult to fully capture given 
inconsistencies in project attribute reporting across 
different regions and countries within the dataset. There 
is also a high degree of uncertainty around long-term 
capacity projections due to unpredictable technological 
changes. As a result, this initial snapshot of the evolving 
hydrogen landscape based on the current dataset will 
need ongoing refinement and updates to improve 
insights, as both represented projects and the overall 
understanding of this emerging sector continue to 
progress and develop over time. 

5. CONCLUSION AND FUTURE WORK 

5.1 Summary of insights gained 

This comprehensive study examined trends in the 
development of global green hydrogen projects through 
a data-driven analysis of the IEA's Hydrogen Projects 
Database, gaining several key insights. Project growth 
was found to be accelerating worldwide with over 50% 
initiated since 2020, led by Germany, Australia, the USA, 
and China, however, the majority remain in early 
planning stages. Transportation, power generation, and 
chemicals were shown to dominate current end-uses, 
though emerging applications in aviation and shipping 
present opportunities. Novel electrolysis technologies 
beyond alkaline and PEM were revealed to be poised to 
enable over half of the projected 2050 capacity, but 
more support is needed for their demonstration and 
commercialization. Countries like Australia, France, and 
Spain were identified as having ambitious 2030 capacity 
targets, but over 500GW of projections were determined 
to remain early-stage, highlighting deployment 
challenges. Clustering uncovered distinct project profiles 
centered on technology, scale, location, and end-use, 
providing a system-level understanding of sector 
architectures. Sophisticated forecasting models were 
also found to effectively predict future growth based on 

 
Fig. 18 Transformer loss function  
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current expansion trends, with the Transformer 
outperforming the RNN architecture. 

5.2 Future work 

Several promising avenues for extending the analysis 
were identified. Conducting a techno-economic analysis 
incorporating projected capital and operating costs for 
different production pathways out to 2050 under varying 
policy scenarios would provide valuable insights into the 
long-term cost competitiveness of technologies. 
Developing an optimization model to determine optimal 
locations and configurations for future hydrogen hubs 
and transport infrastructure based on renewable 
resource availability, demand centers, and pipeline 
routing costs would help guide infrastructure planning. 
Additionally, generating probabilistic/quantile forecasts 
with models like LSTM-ENNs could produce probabilistic 
forecasts accounting for uncertainty in projections. 
Analyzing the models to understand the drivers of 
predictions would improve the interpretability of results. 
Deployment of an online platform for interactive 
forecasts and scenario analysis would allow end users to 
leverage the forecasts for real-world decision making. 
Together, these extensions would contribute important 
strategic considerations around technology pathways, 
infrastructure planning, risk assessment, transparency, 
and operational deployment to facilitate the large-scale 
energy transformation. 

ACKNOWLEDGEMENT 
The authors gratefully acknowledge the support of 

the National Natural Science Foundation of China (NFSC, 
Grant No. 52007025) and the Science and Technology 
Support Program of Sichuan Province (2022JDRC0025). 

DECLARATION OF INTEREST STATEMENT 
The authors declare that they have no known 

competing financial interests or personal relationships 
that could have appeared to influence the work reported 
in this paper. All authors read and approved the final 
manuscript. 

REFERENCE 
[1] G. D. Sharma, M. Verma, B. Taheri, R. Chopra, 
and J. S. Parihar, “Socio-economic aspects of hydrogen 
energy: An integrative review,” Technol Forecast Soc 
Change, vol. 192, p. 122574, Jul. 2023, doi: 
10.1016/j.techfore.2023.122574. 
[2] BloombergNEF, “Hydrogen Subsidies Skyrocket 
to $280 Billion With US in the Lead,” 
https://about.bnef.com/blog/hydrogen-subsidies-
skyrocket-to-280-billion-with-us-in-the-lead/. 

[3] International Renewable Energy Agency., Green 
hydrogen for industry : a guide to policy making.  
[4] M. Yue, H. Lambert, E. Pahon, R. Roche, S. 
Jemei, and D. Hissel, “Hydrogen energy systems: A 
critical review of technologies, applications, trends and 
challenges,” Renewable and Sustainable Energy 
Reviews, vol. 146, p. 111180, Aug. 2021, doi: 
10.1016/j.rser.2021.111180. 
[5] T. Weidner, V. Tulus, and G. Guillén-Gosálbez, 
“Environmental sustainability assessment of large-scale 
hydrogen production using prospective life cycle 
analysis,” Int J Hydrogen Energy, vol. 48, no. 22, pp. 
8310–8327, Mar. 2023, doi: 
10.1016/j.ijhydene.2022.11.044. 
[6] Source: IEA (2021), “Hydrogen Projects 
Database, https://www.iea.org/reports/hydrogen-
projects-database. All rights reserved,” Hydrogen 
Projects Database, 
https://www.iea.org/reports/hydrogen-projects-
database. All rights reserved. 2022. 
[7] A. Glielmo, B. E. Husic, A. Rodriguez, C. 
Clementi, F. Noé, and A. Laio, “Unsupervised Learning 
Methods for Molecular Simulation Data,” Chem Rev, 
vol. 121, no. 16, pp. 9722–9758, Aug. 2021, doi: 
10.1021/acs.chemrev.0c01195. 
[8] A. Alqahtani, M. Ali, X. Xie, and M. W. Jones, 
“Deep Time-Series Clustering: A Review,” Electronics 
(Basel), vol. 10, no. 23, p. 3001, Dec. 2021, doi: 
10.3390/electronics10233001. 
[9] C. YANG and J. OGDEN, “Determining the 
lowest-cost hydrogen delivery mode,” Int J Hydrogen 
Energy, vol. 32, no. 2, pp. 268–286, Feb. 2007, doi: 
10.1016/j.ijhydene.2006.05.009. 
[10] R. Caponi, E. Bocci, and L. Del Zotto, “Techno-
Economic Model for Scaling Up of Hydrogen Refueling 
Stations,” Energies (Basel), vol. 15, no. 20, p. 7518, Oct. 
2022, doi: 10.3390/en15207518. 
[11] P. Agnolucci and W. McDowall, “Designing 
future hydrogen infrastructure: Insights from analysis at 
different spatial scales,” Int J Hydrogen Energy, vol. 38, 
no. 13, pp. 5181–5191, May 2013, doi: 
10.1016/j.ijhydene.2013.02.042. 
[12] IEA, “Global Hydrogen Review 2023 Executive 
summary,” 2023. 
[13] A. M. Oliveira, R. R. Beswick, and Y. Yan, “A 
green hydrogen economy for a renewable energy 
society,” Curr Opin Chem Eng, vol. 33, p. 100701, Sep. 
2021, doi: 10.1016/j.coche.2021.100701. 
[14] R.-H. Lin, Y.-Y. Zhao, and B.-D. Wu, “Toward a 
hydrogen society: Hydrogen and smart grid 
integration,” Int J Hydrogen Energy, vol. 45, no. 39, pp. 



11 

20164–20175, Aug. 2020, doi: 
10.1016/j.ijhydene.2020.01.047. 
[15] I. Marouani et al., “Integration of Renewable-
Energy-Based Green Hydrogen into the Energy Future,” 
Processes, vol. 11, no. 9, p. 2685, Sep. 2023, doi: 
10.3390/pr11092685. 
[16] Y. Guo, G. Li, J. Zhou, and Y. Liu, “Comparison 
between hydrogen production by alkaline water 
electrolysis and hydrogen production by PEM 
electrolysis,” IOP Conf Ser Earth Environ Sci, vol. 371, 
no. 4, p. 042022, Dec. 2019, doi: 10.1088/1755-
1315/371/4/042022. 
[17] S. Krishnan et al., “Present and future cost of 
alkaline and PEM electrolyser stacks,” Int J Hydrogen 
Energy, vol. 48, no. 83, pp. 32313–32330, Oct. 2023, 
doi: 10.1016/j.ijhydene.2023.05.031. 
[18] A. H. Reksten, M. S. Thomassen, S. Møller-Holst, 
and K. Sundseth, “Projecting the future cost of PEM and 
alkaline water electrolysers; a CAPEX model including 
electrolyser plant size and technology development,” 
Int J Hydrogen Energy, vol. 47, no. 90, pp. 38106–38113, 
Nov. 2022, doi: 10.1016/j.ijhydene.2022.08.306. 


