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ABSTRACT 
  Most of the utility meters in Sweden are 

connected using the Internet of Things (IoT) technology. 
This opens new possibilities for understanding society’s 
energy consumption dynamics and making citizens 
aware of their power consumption usage. In this study, 
we investigate the patterns of electricity consumption 
using machine learning methods. We collected metered 
data from Kalmar Energi company, the electrical grid for 
Kalmar city in Sweden. In addition, we collected the 
Kalmar weather and electricity price data from the 
Swedish Meteorological and Hydrological Institute 
(SMHI) and Nordpool, the European leading power 
market, respectively. We comprehensively analyze the 
electricity consumption data to assess the changes in 
overall electricity demand during the year 2021 in the 
city of Kalmar. This information can be of significant 
benefit to other regions seeking to improve their 
sustainability and energy consumption practices. For 
analysis and energy consumption prediction, we utilize 
two forecasting models, i.e., Random Forest (RF) and 
XGBoost. RF model results show a high level of accuracy 
with the achieved R-squared (R2) value of 0.91 compared 
to XGBoost value of 0.87. 
 
Keywords: energy consumption, machine learning, 
energy forecasting, Internet of Things  
 

NONMENCLATURE 

Abbreviations  

IoT Internet of Things 

SMHI Swedish Meteorological and 
Hydrological Institute 

ECP 
RF 
XGBoost 

Energy Consumption Prediction 
Random Forest 
Extreme Gradient Boosting 

1. INTRODUCTION 
With the acceleration of urbanization, the energy 

consumption of buildings is projected to continue rising, 
and it currently makes up over one-third of the global 
total energy consumption [1]. As a result, energy 
conservation and creating sustainable buildings have 
become key focuses for countries worldwide. 
Researchers have suggested various measures to 
conserve building energy, such as employing renewable 
energy sources and utilizing high-performance building 
envelopes, to tackle this problem. An efficient and 
intelligent control is among the most effective measures 
to minimize energy consumption throughout a building's 
lifespan, as highlighted by [2]. Accurate and reliable 
prediction of building energy consumption holds 
immense importance for the optimal scheduling and 
control of predictive building systems, owing to its 
significant entropy [3,4]. There are two primary 
categories of building energy consumption prediction 
(ECP) methods, as outlined in reference [5]: physical 
models and data-driven models. Physical models rely on 
the analysis of energy consumption and utilize the heat-
transfer process and outdoor meteorological conditions 
to make predictions [6]. Detailed information related to 
the building's exterior walls, doors, windows, ground, 
and other aspects, as well as heat sources within the 
building, are essential for physical models. However, 
obtaining such information can often be challenging, 
which restricts the widespread use of physical models 
[7]. As the Internet of Things (IoT) continues to evolve, 
technologies for monitoring building energy 
consumption are becoming more sophisticated. This 
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development, coupled with the availability of a vast 
amount of historical data, has enabled the swift progress 
of data-driven energy consumption prediction models 
[8]. One of the most popular data-driven approaches for 
BECP is machine-learning models, which have emerged 
due to their ability to model intricate and non-linear 
relationships without the need for expert knowledge [9].  
Artificial neural networks [10], support vector machines 
(SVMs) [11], decision trees [12], random forests (RFs) 
[13], extreme gradient boosting (XGBoost) [14], and 
other similar techniques are among the methods being 
used. This study employs a methodical data analysis 
approach and leverages predictive models, specifically 
Random Forests (RF) and XGBoost, to offer valuable 
insights [15]. The central objective of this study is to 
comprehend energy consumption patterns, elucidating 
the relationships between external factors, such as 
temperature and price as well as formulating predictive 
models to anticipate future power utilization trends. The 
main contributions of this study are as follows: 

• Investigate the patterns of electricity 
consumption with the correlation of weather 
and price data. 

• Develop an accurate forecasting model for 
electrical loads that mirrors real-world 
consumption trends. 

The rest of the paper is organized as follows. Section 
2 covers the literature review and previous research.  
Section 3 presents materials and methods in which we 
provide our methodology, data description and 
visualization, and model development. Section 4 

evaluates the models' accuracy and interprets the 
prediction results. Section 5 presents the discussion and 
conclusions.  

2. LITERATURE REVIEW  
The study [16] provides an extensive overview of 

machine learning methods for predicting energy 
consumption in the context of load forecasting. The 
authors discuss various machine learning approaches, 
analyze their pros and cons, and highlight their 
applications in power usage prediction. In the study [17] 
authors developed a machine learning model for power 
load estimation, aiding grid maintenance and electricity 
trading. It combines a precise Gated Recurrent Unit 
(GRU) with a RF model to simplify the model. The lighter 
GRU enhances efficiency but slightly sacrifices accuracy 
compared to the original model. The authors [18] 
introduced a power consumption forecasting method 
using the XGBoost algorithm. They applied it to user data 
from an industrial park and their results showcased the 
method's remarkable accuracy, adaptability, and 
suitability for future power grid planning. However, 
authors in [19] employed RF, XGBoost, and Linear 
Regression models and considered environmental and 
temporal factors such as temperature and time of day. 
Among these models, the RF approach was found to be 
the most effective. Authors in [20] analyzed power 
consumption patterns in a university campus over the 
course of one calendar year. The authors compared 
power usage on weekdays and weekends, as well as in 
academic and residential buildings. They also considered 
the impact of temperature as an external factor affecting 
the power usage in that area with a New England climate. 
In our proposed study, we are applying RF and XGBoost 
model for power consumption analysis with the 

 
 

Fig. 1 Workflow used for electric load forecasting using RF and XGBoost. 
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consideration of environmental and price factor for a 
city-wide area. 

3. MATERIALS AND METHODS   

3.1 Data description and pre-processing 

The research data were obtained from the IoT-
connected utility meters installed by Kalmar Energi 
company, the electrical grid for Kalmar city in Sweden. 
The energy consumption data belongs to five areas 
namely, Kvarnholmen, Varvsholmen, Berga, Malmen, 
and Stensö, and includes apartments, houses, industries, 
office buildings, restaurants, care centers, and hospitals. 
The research data consists of electrical load data 
recorded on an hourly basis from 1st January to 31 
December 2021. This dataset comprises a total of 
332,790 rows. During raw data acquisition, various issues 
may arise, including sensor malfunctions and 
interruptions in data transmission signals, leading to null 
values or outliers within the dataset. Therefore, 
preprocessing is imperative as a preliminary step before 
data analysis. The null values and duplicate entries on 
hourly energy consumption have been removed from the 
dataset. This deduplication process resulted in a dataset 
containing 319,523 rows. Our methodology is shown in 
Figure 1. 

Table 1 displays the dataset's status following initial 
preprocessing. In Table 1, CUSTOMER represents the ID 
assigned to energy meter. HOUR0 ~ HOUR23 is the user's 
energy consumption in megawatt each hour of the day. 
One Day Power is the total amount of energy consumed 
by the user in the day and Temp is the average 
temperature for the day.  

To have a general view of the data, we showed the 
number of areas with the number of customers in each 
area in Table 2.  

Then, we diagrammed the data based on the distinct 
areas, with the annual energy consumption for each of 
the five areas presented in Figure 2. Observations from 

the figure reveal a notably higher energy consumption in 
the Stensö area compared to the other areas. 

Regarding the low number of customers in this area, 
the discrepancy can be attributed to the predominance 
of villa-type residences and industrial facilities within the 
Stensö area.    

3.2 Data Visualization  

In this study, we have chosen to focus exclusively on 
the Kvarnholmen area as our primary case study.   
Before visualizing the relation between the external 
parameters such as temperature and price with power 
consumption, first we visualize the hourly-total, daily-
total, and daily-average power consumption in 
Kvarnholmen to getting a first flavour of the data. 

 We have partitioned the day into two distinct 
segments: the residential phase, denoted as "home-
time," and the occupational phase, referred to as "work-
time." Our analysis, as depicted in the hourly graph 

Table 1 Statistics of the dataset. 

 

Table 2 The number of customers in each area of Kalmar. 
Area Number of Customers 

Kvarnholmen 401 
Berga 278 

Malmen 255 
Stensö 53 

Varvsholmen 43 
 

 
Fig. 2 Power consumption distribution of five areas 

in Kalmar. 
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(Figure 3), reveals a notable disparity in power 
consumption between these two periods. During work-
time, power usage exhibits a noticeable rise, primarily 
attributable to the simultaneous operation of various 
entities such as restaurants, companies, and industries. 
These entities use higher energy, way more than home 
activities like cooking, doing laundry, and using 
household appliances. 

Of particular interest is the interval between 11 a.m. 
and 2 p.m., the graph shows a small decrease in power 
usage. This slope corresponds to the lunchtime period, 
during which power-intensive activities within the 
studied area are temporarily suspended. This nuanced 
fluctuation in power consumption reflects the dynamic 
nature of daily energy demand and underscores the 
impact of commercial and industrial operations on the 
overall power grid. 

Figures 4 and 5 provide insights into the daily total 
power consumption and daily average power 
consumption across all customers, respectively. Notably, 
a consistent pattern emerges across both figures, 

characterized by a consumption range spanning from a 
minimum observed in May to a peak of 110 mWh 
recorded in December (Figure 4). 

The average consumption exhibits a narrower range, 
fluctuating between 0.12 mWh in the middle of May to 
0.28 mWh in December (Figure 5). From late July to the 
end of August, which is typically vacation time, we can 
observe a noticeable drop in power usage. 

3.2.1 Temperature and power consumption 

A comprehensive study was conducted on the daily 
average energy consumption and temperature 
fluctuations within the Kalmar city center area, explicitly 
focusing on Kvarnholmen over a year. The Kvarnholmen 
area, characterized by a substantial mix of residential 
and commercial zones, exhibits energy consumption 
levels that represent the average within the area—
depicted in Figure 6. 

The discernible contrast between winter and 
summer is evident in the temperature fluctuations. 
During the summer, there is a noticeable decrease in 
energy consumption, partly attributed to less need for 
heating and longer daylight. Conversely, energy 
consumption rises during the extended winter nights, 
further substantiating the correlation between energy 

Fig. 3 Hourly total power consumption in 
Kvarnholmen. 

Fig. 4 Daily-total power consumption in Kvarnholmen. 

Fig. 5 Daily average power consumption in Kvarnholmen. 

 

Fig. 6 Tracking power consumption and temperature 
trends in Kvarnholmen. 
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usage and temperature variations, particularly in 
response to seasonal changes. 

3.2.2 Customer numbers and power consumption 

At the end of August, more buildings were 
constructed in the city center, which is reflected in the 
increasing number of customers in this area. Figure 7 
illustrates a clear relationship between the growth in 
customer numbers and power consumption. This is 

consistent with common knowledge that an increase in 
customers typically leads to a greater demand for various 
services, including electricity for residential and 
commercial use. 

3.2.3 Price and power consumption 

The currency depicted in Figure 8 is the Swedish 
Krona (SEK), which equals 0.1 Euro in the year 2021. The 
recorded average price exhibits fluctuations, reaching its 
lowest point at approximately 200 SEK per month by the 
end of September and peaking in December at a value 
exceeding 4000 SEK. 

The average power consumption shown in Figure 8 
also indicates fluctuations in average price. For instance, 
as the average power consumption line reaches its lower 

interval from April to mid-May, the corresponding 
average price in SEK also exhibits a lower value, hovering 
around 200 SEK. Conversely, in December, when the 
average power consumption reaches its peak, the 
average price in SEK surges to more than 4000 SEK. These 
fluctuations in price and consumption patterns reveal a 
potential relationship between energy demand and cost. 

3.3 Model Development 

To enhance the precision of predicting user energy 
consumption, thereby aiding the company's decision-
making process, we chose the data from the Berga area 
to construct our model. We selected Berga because it is 
a residential area, which makes the data more consistent 
and simpler to analyze. 

The RF based on a decision tree is selected to build 
the model. Our hypothesis posits that users can make 
independent choices regarding energy consumption and 
are likely to adjust depending on environmental factors 
such as temperature and socioeconomic factors 
encompassing household income and energy prices.  

To account for the influence of temperature and 
price, we had to utilize the Swedish Meteorological and 
Hydrological Institute (SMHI) [21] API for gathering 
temperature data, and we accessed energy average price 
data for each day from the Nordpool [22] API, which is a 
prominent European power market provider. 

We have pinpointed three key input variables for our 
model: customer ID, temperature, and price. These 
variables will predict the daily total energy consumption, 
serving as the model's output parameter. 

The division of the dataset into a training set and a 
test set follows a ratio of 7:3, resulting in 255 rows 
allocated to the training set and 110 rows to the test set 
(in total, 365 rows which is the average power 
consumption in one year). A 5-fold cross-validation 
approach was employed to optimize the model's 
hyperparameters. After optimization, the 
hyperparameters max	 _𝑑𝑒𝑝𝑡ℎ  and 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 
were determined to have their optimal values set at 5 
and 50, respectively. 

To comprehensively compare the prediction 
performance of the two models, Mean Square Error 
(MSE), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE), 
and R-Square (R2) are used to evaluate the accuracy of 
the models. The evaluation index formulas are as 
follows: 

 
𝑀𝑆𝐸 = !

"
∑ (𝑦#$ − 𝑦#)%"
#&!                (1) 

 

Fig. 7 Tracking average power consumption and 
customer trends in Kvarnholmen. 

 

 

Fig. 8 Tracking power consumption and price trends in 
Kvarnholmen. 
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Where 𝑛 is the number of samples; 𝑦#  is the true 

value; 𝑦#$  is the predicted output value of the model; 
and 𝑦,H	 is the average value of the samples. Further 
details regarding the development can be found in [23]. 

 
4. RESULTS AND ANALYSIS 

The model evaluation results, as presented in Table 
3, indicate that the achieved R-squared (R2) value of 
0.91 demonstrates a high level of accuracy. 

As shown in Table 3, the RF model generally 
performs better than the XGBoost model in terms of 
prediction accuracy and explaining the variance in the 
data. It has lower MSE, RMSE, MAE, MAPE, and a higher 
R2 value, suggesting that it provides more accurate and 
reliable predictions. 

We also comprehensively analyzed the results by 
employing a correlation matrix encompassing power 
consumption, temperature, and price variables, 
partitioned into two distinct parts. The first part involved 
an in-depth correlation analysis within a specific area, 
focusing primarily on Berga. Subsequently, the second 
part comprised a broader correlation analysis 
encompassing all the studied areas. 

4.1 Correlation Analysis of One Area-Berga 

We conducted a correlation analysis utilizing the 
Pearson correlation coefficient to examine the 
relationship between temperature and hourly power 
consumption across various temporal segments. We 
analyze the correlation matrix in two aspects: 1) Hourly 
power consumption correlation, and 2) temperature and 
price correlation with power consumption, respectively. 

Firstly, we investigated correlations among different 
hours of the day. 

Our findings revealed (Figure 9) that during home-
time hours, specifically from 12 a.m. to 6 a.m. and from 
5 p.m. to 12 a.m., there exists a high degree of positive 
correlation, exceeding 90 percent. These strong 
correlations manifest as dark-red colors within the 
correlation matrix, signifying a robust and direct 
association between these hours. In contrast, the 
correlation between home-time and the interval 
spanning from 6 a.m. to 5 p.m., corresponding to work 
hours, demonstrates comparatively lower values, with 
levels hovering around 60 to 87 percent. Similarly, work-
time hours exhibit a notably strong correlation, reaching 
approximately an average of 80 percent. 

4.1.1 Temperature and power consumption 

We explored the correlation between hourly power 
consumption and temperature within the matrix. These 
analyses unveiled an inverse relationship, indicating that 
higher temperatures coincide with reduced power 
consumption. Specifically, we observed that during the 
hours between 12 a.m. to 6 a.m. and from 6 p.m. to 12 
p.m., there exists a more pronounced inverse correlation 
between temperature and power consumption when 
compared to the hours spanning from 6 a.m. to 5 p.m. 
This disparity suggests that individuals tend to utilize 

Table 3 The RF and XGBoost model evaluation 
results. 

Model RF XGBoost 
MSE 0.7028 1.8796 

RMSE 0.8383 1.3710 
MAE 0.6492 1.0408 

MAPE 5.3251 6.8080 
R2 0.9173 0.8770 

 

 

Fig. 9 Correlation between hourly power consumption in 
Berga. 
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more power while at home and awake, as opposed to 
when they are asleep or at work. Furthermore, the 
correlation coefficient for the first part of home-time (12 
a.m. to 4 a.m.) is lower than that of the latter part (4 p.m. 
to 12 a.m.), signifying that energy consumption is 
influenced by the temperature more during the active 
hours when residents are awake and engaged in daily 
activities. 

4.1.2 Price and power consumption analysis 

We examined the relationship between hourly 
power consumption and price, as indicated by the yellow 
line in the correlation matrix. Our analysis reveals that 
the price coefficient exhibits a positive shift, increasing 
from 0.11 to 0.17 during the hours of 12 a.m. to 5 a.m. 
and 7 p.m. to 12 p.m. However, between 6 a.m. and 6 
p.m., this coefficient experiences a more substantial 
change, rising from 0.2 to 0.3. Despite these fluctuations, 
the overall impact of price on power consumption during 
these intervals remains minimal and may not be 
considered significant. 

4.2 Correlation Analysis of All Areas 

Figure 10 reveals distinct patterns in the correlation 
between power consumption, temperature, and price 
across different areas. In Berga, there exists a strong 
correlation of approximately 90% between power 
consumption and temperature, indicating that power 
usage in this area is significantly influenced by changes in 

temperature. Additionally, there is a weak negative 
correlation (-0.17) between power consumption and 
price in Berga, implying that higher prices are associated 
with a slight decrease in power usage. 

Conversely, Kvarnholmen demonstrates a low 
correlation (-0.075) between power usage and 
temperature, suggesting that energy consumption in the 
city center remains relatively stable regardless of 
weather conditions. Kvarnholmen exhibits the highest 
positive correlation coefficient (0.71) between power 
usage and price. This signifies a strong positive 
relationship, implying that power consumption also 
increases significantly in Kvarnholmen as electricity 
prices rise. 

Malmen displays moderate correlations, with a 
correlation coefficient of approximately -0.47 between 
power consumption and temperature, and a 
corresponding positive correlation of about +0.47 
between power consumption and price. These findings 
suggest that temperature has a moderately noticeable 
effect on power consumption in this area, and as prices 
increase, power usage tends to rise moderately. In 
contrast, both Stensö and Varvsholmen exhibit very 
weak relationships between power usage and both 
temperature and price. Temperature and price 
fluctuations have minimal influence on power 
consumption in these areas. 

5. DSDISCUSSION AND CONCLUSION 
Our study aimed to uncover insights that could 

inform energy management and policy decisions to 
understand the factors influencing power consumption 
in various areas of Kalmar, Sweden. In our dataset 
encompassing hourly power consumption records for 
five distinct areas in Kalmar, Sweden, comprising a total 
of more than 300,000 data points, we encountered 
certain limitations that merit consideration in our 
analysis. Our dataset includes essential information such 
as customer ID, area, 24-hour power consumption, date, 
temperature, and price. However, we need more critical 
details regarding the building type (residential or 
commercial) and the specific heating systems employed 
within these structures. 

These missing pieces are important as they can 
influence power consumption patterns significantly. For 
instance, residential and commercial buildings often 
exhibit distinct energy usage profiles due to differing 
operational hours, occupancy patterns, and heating 
methods. Additionally, the type of heating system, 
whether local or central, can introduce substantial 
variations in power consumption. 

 

Fig. 10 Correlation between hourly power consumption 
with temperature and price in all areas. 
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This contextual information is necessary to perform 
a more detailed and accurate analysis. It hampers our 
capacity to draw precise conclusions regarding the 
factors contributing to power consumption trends in the 
studied areas. Despite these constraints, our study 
endeavors to derive meaningful insights from the 
available data, recognizing that further research 
incorporating additional data attributes could enhance 
the depth and accuracy of our analysis. 

Our study highlights the importance of leveraging 
advanced data analytics and machine learning methods 
to inform decision-making and better understanding of 
energy consumption. This understanding is crucial for 
addressing challenges related to energy sustainability. 
Our analysis unveiled essential changes in electricity 
demand, offering valuable insights into consumption 
trends in Kalmar using two predictive models, RF and 
XGBoost, to aid in understanding and forecasting these 
patterns.  

These insights are pivotal in guiding future energy 
policies and management strategies for Sweden. This 
study is also significant beneficial for other regions or 
countries to improve their energy consumption usages, 
ultimately contributing to a more sustainable and 
resilient energy future. 
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