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ABSTRACT 
 The zero-carbonization trend has accelerated 

the popularity of EVs due to their low-carbon emissions 
and energy-efficiency advantages. FCS act as both 
charging service operator and load aggregator. They 
need to benefit from providing charging service to 
electric vehicle users while also coordinating the 
charging power of EVs to prevent overloading. This paper 
proposes a novel approach that integrates charging right 
trading and charging pricing using reinforcement 
learning algorithms. The proposed framework takes into 
account the influence of charging right prices on charging 
demand of EV users. It employs a reinforcement learning 
algorithm to learn the optimal charging pricing strategy 
and EV charging schedule for FCS, with the aim of 
maximizing the benefit of FCS. Numerical experiments 
are conducted to demonstrate the effectiveness of the 
proposed method. 
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NONMENCLATURE 

Abbreviations  

 EV 
 FCS 
 CR 
 CRM 
 RL 

Electric Vehicle 
Fast Charging Station 
Charging Right 
Charging Right Trading Mechanism 
Reinforcement Learning 

Symbols  

 𝛺𝑡 
 
 𝛪𝑡 
 

The set of EVs waiting to be charged 
in the FCS at time t 
The set of EVs arriving at the FCS at 
time t 

 𝛷𝑡 
 
 𝑑𝑖  
 𝜑𝑡

𝑐𝑠 

 𝜑𝑡
𝑐𝑟 

 𝜑𝑡
𝑒 

 𝑝𝑖𝑡  
 

The set of EVs that are already at the 
station at time t. 
Charging demand of the i th EV 
Charging price at time t 
Charging right price at time t 
Electricity price at time t 
Charging power of the i th EV at time 
t 

 

1. INTRODUCTION 
In the context of carbon neutrality, EVs are playing a 

crucial role in the global transportation system. The 
number of EVs is increasing dramatically worldwide, 
leading to a growing demand for EV charging. In China, it 
is estimated that by 2030, about 80% of EVs will be 
charged at public charging stations, where fast charging 
will play an important role. Fast charging stations are 
critical infrastructure for emergency EV charging and will 
be rapidly developed to meet the increasing demand. 
However, fast charging behavior is characterized by short 
charging cycles and high charging power, which can 
threaten the safety of the distribution network and lead 
to a loss of social welfare if not properly coordinated. The 
limited number of charging piles and the sharp increase 
in EVs will exacerbate the charging coordination problem 
for fast charging stations and pose challenges to charging 
management. 

Under an appropriate demand response mechanism, 
EVs can adjust their charging demand based on the 
charging prices announced by FCS or utility companies. 
With the application of more reliable and privacy-
protecting technologies, such as blockchain, EVs can 
access the real-time status of the FCS, which enables the 
real-time model to match the actual situation. From the 
perspective of the FCS, effective pricing and scheduling 
policies are needed to ensure their revenue while 
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enhancing the charging experience of EV users. Previous 
studies [3-6] have examined EV charging scheduling and 
FCS optimal pricing problems from different perspectives 
but did not consider the variation of EV users' charging 
demand with price and relied on accurate EV charging 
forecasts. Reinforcement learning algorithms have been 
successfully applied to various EV scheduling problems, 
allowing for real-time stochastic and dynamic problems 
to be addressed without the need to understand the 
system model or technical parameters [7-11]. 

In contrast to existing studies, we investigate the 
impact of CRM on charging demand of EV users, as well 
as the optimal pricing and charging scheduling strategy 
for FCS under random EV arrival and departure. We 
formulate this problem as a Markov decision process. To 
address the challenge of time-varying state space and 
action space due to the random arrival and departure of 
EVs, we propose a model-free and on-policy RL 
algorithm. We verify the effectiveness of the proposed 
algorithm through simulation. 

The remainder of this paper is organized as follows: 
Section II introduces the CRM and the FCS optimization 
model. Section III presents the Markov decision process 
and the improved SARSA algorithm. In Section IV, we 
present a case study. Finally, Section V concludes the 
paper and discusses future work. 

2. MODEL FORMULATION 

2.1 Charging right trading mechanism 

To enhance the user charging experience and service 
guarantee capability of EV charging infrastructure in 
urban public fast charging systems, it is essential to 
accelerate the innovation of related technologies, 
models, and mechanisms. Literature [12] proposes a new 
charging right trading mechanism (shown in Fig. 1), 
which effectively reduces EV charging waiting time and 
alleviates congestion. 

In this mechanism, EV users can access the Internet 
to obtain estimated waiting times and charging prices, 

decide when and where to charge, and book or request 
to purchase charging rights on the CR platform. Prior to 
the introduction of the CRM, EVs charged at a certain 
power and paid a charging fee to the FCS based on the 
charging price and their own charging needs once they 
arrived at the FCS. However, some EV users may alter 
their charging demands and FCS choices due to 
excessively high charging right prices, assuming that 
these FCSs belong to different charging network 
operators or are independently priced. This makes it 
necessary for FCSs to set more reasonable charging 
prices and powers to safeguard their own interests. 

2.2 FCS optimization model 

When an EV arrives at a FCS, it submits a charging 
request to the energy management system of FCS, which 
includes the parking duration and charging 
requirements. Subsequently, the FCS needs to promptly 
respond by determining whether to accept the request 
and incorporate it into the charging schedule (assuming 
the charging capacity is sufficient; this paper does not 
consider cases where the FCS has to reject newly arrived 
vehicles due to full occupancy). Simultaneously, the FCS 
must establish charging prices for all EVs arriving at time 
t. These charging prices vary for EVs arriving at different 
times and remain constant throughout the charging 
process. It is assumed that EV users automatically accept 
the prevailing charging price upon entering the FCS. In 
practice, if the charging price at the current FCS is 
excessively high, price-sensitive EV users may opt for 
alternative FCSs, resulting in zero charging demand at 
that time. Taking into account the influence of both CR 
price and charging price, the EV charging demand can be 
described by the following equation: 

 
1 2
( )

cs cr

i t t
d    = + +  (1) 

where 𝑑𝑖  is the charging demand of the i th EV; 𝜑𝑡
𝑐𝑠 

and 𝜑𝑡
𝑐𝑟 is the charging price and CR price at moment t, 

respectively; and 𝛼1 and 𝛼2 denote the price elasticity 
coefficients of the EV charging demand. 

At time t, the FCS engages in the charging process for 
EVs and compensates the electric utility for the 
consumed electricity. However, due to the uncertainty 
surrounding EV arrivals and electricity prices, the FCS is 
only aware of the EV charging requests that have already 
arrived, as well as the historical and current electricity 
prices. The scheduling problem for the FCS can be 
formulated as an optimization problem with the 
objective of maximizing FCS profit while adhering to 
operational constraints. 

 max

t t

cs e

t t i t it

i i

R d p 
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= −   (2) 

 
Fig. 1. Structure of CRM  
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where 𝑅𝑡  is the profit of the FCS at time t. 𝜑𝑡
𝑒  is 

electricity price at time t. 𝛪𝑡 is the set of EVs arriving at 
the FCS at time t. 𝛺𝑡  is the set of EVs waiting to be 
charged at the FCS at time t. Τ is the set of FCS 
dispatching times. 𝑝𝑖𝑡  is the charging power of the i th 
EV at time t. 𝑝max is the maximum charging power of 
the EV. 𝑒max is the maximum charging capacity of the 

FCS. And 𝑡𝑖
𝑎  and 𝑡𝑖

𝑑  denote the arrival time and the 
departure time of the i th EV respectively. 

3. METHODOLOGY 

3.1 Markov decision process 

In this section, the FCS decision-making process is 
formulated as an Markov decision process (MDP) model. 
When the EV arrives at the FCS, it will be connected to 
the charging post, and the FCS can get the information of 
EV's charging demand and departure time through the 
charging post, and at the same time, the FCS can get the 
real-time electricity price through the Internet. The FCS 
is regarded as an intelligence that coordinates the 
charging power of the EV and the charging price. The 
MDP model consists of the states, actions, rewards, and 
transition functions, which are defined as follows. 

(1) State: the system state at time t includes the set 
of EVs already at the station, the remaining charging 
demand of EVs already at the station, and the departure 
time of EVs already at the station. 

 ( , , )
d

t t i t i t
S d i t i=       (6) 

where 𝛷𝑡 is the set of EVs that are already at the station 
at time t. 

(2) Action: the decision of the agent FCS is the 
charging price and EV charging power at time t, and the 
action space is described as a high-dimensional vector. 

 ( , )
cs

t t it t
A p i=    (7) 

Because the monolithic EV decision makes the 
dimension of the action space too high and difficult to 
solve, the problem is changed from the original 
monolithic EV charging power optimization to the 
aggregated EV charging power optimization, so as to cut 
down the action space, and the dimensionality of the 
action space is reduced from |𝛺𝑡| + 1  dimensions to 
two dimensions after the cut. 

 ( , )cs

t t tA e=  (8) 

where, 

t

t it

i

e p


= is the total charging power of the EV to be 

charged at time t. 

(3) Reward function: the design of the reward 
function is closely related to the goal of FCS, then the 
reward function at time t can be calculated by equation 
(2). 

(4) Transfer function: the new state of the 
environment is affected by the arrival and departure of 
the EV, and the state transfer function at the moment 
t+1 as follow: 

 
1 1 1 1

( , , )
d

t t i t i t
S d i t i

+ + + +
=       (8) 

where 𝛷𝑡+1 is the set of EVs that are already on station 
at the time t+1. 

3.2 SARSA algorithm 

State-Action-Reward-State-Action(SARSA) algorithm 
is an on-policy reinforcement learning algorithm based 
on a state-action value function, whose basic idea is to 
find the optimal policy by continuously learning a state-
action value function through interaction with the 
environment. At each time step, it selects an action and 
executes it based on the current state and the state-
action value function, and then updates the state-action 
value function based on the feedback from the 
environment and the next state. This process iterates 
until it converges to the optimal state-action value 
function and policy. However, since the dimension of the 
state space keeps changing with the random arrivals and 
departures of EVs and is proportional to the number of 
EVs already at the station, for this reason, a SARSA 
algorithm that approximates the original state-action 
value function by a linear combination of multiple 
eigenfunctions is proposed. The feature functions are 
described in detail in [13] and will not be repeated in this 
paper. 

4. NUMERICAL EXPERIMEN 
In this section, numerical simulations are performed 

to verify the validity of the proposed model and 
methodology. All calculations were performed in Python 
on a computer with an Intel Core i7-10400 2.90 GHz CPU 
and 16 GB of RAM. 

The simulations were based on hourly historical 
data, including the California ISO's open-source San 
Francisco day-ahead electricity prices and the number of 
vehicle arrivals (total number of vehicles passing 
through) at the Richards Avenue station near downtown 
Davis. The time span of the electricity price dataset is 
from January 1, 2017 to June 30, 2017, and the time 
period length is one hour, as shown in Fig. 2. The time 
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span of the vehicle dataset was from October 1, 2016 to 
October 12, 2016, with a time period length of 30 
seconds, and the number of EVs entering the CS was 
modeled using the scaled number of arrivals, which were 
categorized into three types: emergent, normal, and 
residual, as shown in Fig.3. 

During the training process, we test and evaluate the 
strategy periodically. Fig. 4 shows the performance curve 
of the algorithm, and it can be seen that the proposed 
algorithm has good convergence and gradually reaches a 
stable state as the number of iterations increases. 

5. CONCLUSIONS 
In this paper, considering the impact of the charging 

right trading mechanism on EV users' charging demand, 
an optimization model of FCS pricing and scheduling 
strategy is constructed with the objective of maximizing 
the profit of FCS. Then, a model-free reinforcement 
learning algorithm is proposed to solve the MDP 
problem, which approximates the state-value function 
using linear weighting of the eigenfunctions to further 
improve the solution efficiency of the proposed 
algorithm, and the effectiveness of the proposed 
algorithm is verified by simulation with real data. In 
future work, charging network operators with multiple 
FCSs and queuing models are considered to further 
enrich the model, while attempting to use a more stable 
deep reinforcement learning algorithm to solve the 
problem. 
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