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ABSTRACT 
In the pursuit of sustainability and energy efficiency, 

accurate short-term prediction of HVAC energy 
consumption is crucial. Deep learning emerges as a 
promising solution for handling diverse data challenges 
in building HVAC systems. While deep generative 
learning excels in computer vision, its potential in 
predicting energy consumption remains largely 
untapped. This study first introduces a novel framework, 
transforming forecasting into a conditional generative 
problem in the temporal domain. We then propose DAF-
GAN, an image inpainting-based data-driven method for 
Day-Ahead Forecasting of buildings’ HVAC energy 
consumption using multi-channel Generative Adversarial 
Networks (GANs). In day-ahead forecasting tasks across 
eleven real-world buildings, DAF-GAN exhibits relative 
improvements of 17% to 68% across four different error 
metrics compared to six traditional and deep learning 
models. DAF-GAN also demonstrates less bias and 
superior stability when applied to different buildings, 
holding promise for enhancing energy-efficient building 
automation and management. 
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conditional generative adversarial network, deep 
learning, image inpainting, artificial intelligence 

NOMENCLATURE 

Abbreviations  

1DCNN One-Dimensional Convolutional 
Neural Network 

2DCNN Two-Dimensional Convolutional 
Neural Network 

ARIMA Autoregressive Integrated Moving 
Average 

CNN Convolutional Neural Network 

CV-RMSE Coefficient of Variation of Root Mean 
Square Error 

GAN Generative Adversarial Network  
GASF Gramian Angular Summation Field 
GRU Gated Recurrent Unit 

HVAC Heating, Ventilation and Air-
Conditioning 

LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MBE Mean Bias Error 

MC-1DCNN Multi-Channel One-Dimensional 
Convolutional Neural Network 

MLP Multilayer Perceptron 
RMSE Root Mean Square Error 

Symbols  

𝑦𝑦𝑘𝑘 Actual Data Point 
𝑦𝑦𝑘𝑘� Estimated Data Point 

1. INTRODUCTION 
In the quest for sustainability and energy efficiency, 

the effective management of Heating, Ventilation, and 
Air Conditioning (HVAC) systems within the built 
environment assumes a pivotal role. HVAC systems are 
the most energy-consuming service worldwide, 
contributing to 38% (12%) of global building (final) 
energy use [1], making their effective management a key 
driver in achieving energy conservation objectives. The 
cornerstone of this endeavour is the accurate and timely 
prediction of HVAC energy consumption, which offers 
vital insights for proactive energy management and cost 
mitigation. 

Despite remarkable strides in HVAC system design 
and control strategies, the ability to forecast energy 
consumption at fine temporal resolutions, particularly 
for the short term, remains a formidable challenge. 
Accurate short-term predictions are pivotal for 
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optimizing HVAC operations and enabling demand-side 
management. Traditional forecasting methodologies, 
such as Autoregressive Integrated Moving Average 
(ARIMA) [2], often fall short of capturing the intricate 
dynamics inherent in HVAC systems, particularly when 
dealing with diverse and multivariate data sources. 

Deep generative learning methods, such as 
generative adversarial networks (GANs) [3], have been 
continually demonstrating remarkable advantages in 
computer vision, while their potential in building energy 
consumption prediction remains largely untapped. 
Although certain studies have recognized the 
applicability of GANs in predicting building energy 
consumption, their utilization has been predominantly 
confined to indirect tasks such as feature engineering [4] 
or data augmentation [5]. The direct application of GANs 
for energy consumption prediction has yet to be 
extensively explored.  

Recognizing these research gaps, in this paper, we 
first introduce a novel framework to reformulate 
forecasting into a conditional generative problem. Then 
we propose DAF-GAN, an image inpainting-based data-
driven method for Day-Ahead Forecasting of buildings’ 
HVAC energy consumption using multi-channel GANs, 
which directly employs GANs for precise building energy 
consumption prediction. To rigorously assess the 
performance of DAF-GAN, we meticulously selected and 
implemented a comprehensive suite of benchmark 
models, encompassing ARIMA, Multilayer Perceptron 
(MLP) [6], Convolutional Neural Network (CNN) [7] w/ or 
w/o multi-channel inputs, Long Short-Term Memory 
(LSTM) [8], and Gated Recurrent Unit (GRU) [9]. We 
defined a comprehensive set of five evaluation metrics 
and compared the performance of DAF-GAN and the 
selected benchmark models in our case studies, which 
utilized actual HVAC energy consumption data from 
eleven realistic buildings. 

The remainder of this paper is structured as follows: 
Section 2 provides the theoretical and methodological 
details of our proposed framework and DAF-GAN; 
Section 3 outlines the case study implementation, 
including data sources and experimental design; Section 
4 presents the results and discussions; and Section 5 
concludes the paper and highlights our future research 
extensions related to this study. 

 
2. THEORY AND METHODOLOGY 

2.1 GANs and Conditional GANs 

A GAN consists of two neural networks, a generator 
and a discriminator, engaged in a competitive process. 

The generator generates synthetic data to mimic real 
data, while the discriminator tries to distinguish between 
real and synthetic data. As training progresses, the 
generator learns to produce increasingly realistic data, 
while the discriminator becomes adept at differentiating 
real from fake data. This adversarial training leads to the 
generator producing high-quality data samples. 

Conditional GANs [10] extend the GAN concept by 
introducing conditional information. In conditional 
GANs, the generator takes additional input in the form of 
conditional data, such as images with corrupted regions 
that require restoration. This conditioning empowers the 
generator to produce data samples that align with 
specific conditions.  

 

2.2 A novel framework to reformulate forecasting into a 
conditional generative problem 

Building upon the fundamental insight that 
"forecasting is about generating data of future" [10], we 
introduce a novel framework that reformulates 
forecasting into a problem of conditional generation.  

This framework leverages the Gramian angular 
summation field (GASF) technique [11], which affords a 
unique, bijective image encoding of time series data. By 
encoding historical energy time series into GASF and 
strategically padding unknown future values with zeros, 
we effectively reframe the forecasting task into a specific 
conditional generative problem, i.e., an image inpainting 
problem (akin to the example illustrated in Fig. 1).  

 

 
Fig. 1. Example of an image inpainting problem 

 
As shown in Fig. 1, image inpainting is a computer 

vision problem that requires special techniques to fill in 
or restore missing or damaged portions of an image, 
effectively "painting" over the gaps with contextually 
appropriate visual information. Conditional GANs are 
particularly well-suited for image inpainting tasks due to 
their ability to generate high-quality, contextually 
relevant image content. By conditioning the generator 
on both the available image context and the target 
inpainting location, conditional GANs excel in producing 
high-quality reconstructions, effectively "completing" 
missing regions with plausible information. This makes 
them a valuable tool for the reformulated forecasting 
task. 
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2.3 DAF-GAN: Day-ahead forecasting of buildings’ HVAC 
energy consumption using multi-channel GANs 

Fig. 2 depicts the inference stage of our proposed 
DAF-GAN method, which also shows how it reformulates 
a forecasting problem into an image inpainting problem. 

The multi-channel inputs are three-fold, including 
padded historical energy inputs (1 channel), 
meteorological inputs (5 channels) and date information 
inputs (2 channels). Previous studies have consistently 

underscored the substantial impact of meteorological 
conditions [13] and date information [14] on building 
energy consumption. Therefore, the integration of 
multiple channels to account for these influential factors 
holds the promise of enhancing predictive performance. 

DAF-GAN leverages the UNet [15] architecture as the 
forecaster (generator) to produce inpainted HVAC 
energy consumption maps. In parallel, a two-
dimensional CNN (2DCNN) discriminator is employed to 
assess the authenticity of the inpainted maps.  

 
Fig. 2. Schematic representation of the proposed DAF-GAN method converting forecasting into a conditional generative problem 

 

3. CASE STUDIES 

3.1 Data 

The building HVAC energy data and weather data 
used in this paper were drawn from the "Energy 
Detective" competition [16], including three years (2015-
2017) of energy data collected from eleven office 
buildings in Shanghai. The holiday data were summarized 
based on the holiday schedules announced by the 
General Office of the State Council of the PRC. 

 

3.2 Experimental design 

3.2.1 Data splitting strategy 
We utilize data from 2015-2016 as the training set 

(66.7%) and evenly split the data from 2017 into a 
validation set (16.7%) and a testing set (16.7%). This 
approach ensures a fair evaluation of models' 
performance on unseen data while using historical data 
for training. A tailored data cleansing procedure was 
applied before feeding the data to the models. 

 
 

3.2.2 Evaluation metrics 
To provide an extensive evaluation of the models' 

performance, five evaluation metrics are used to 
evaluate the performance of different models. These 
metrics include four error metrics, namely the mean 
absolute percentage error (MAPE), coefficient of 
variation of root mean square error (CV-RMSE or CVRMSE), 
mean absolute error (MAE), root mean square error 
(RMSE), and one bias metric, namely the mean bias error 
(MBE). Definitions of the error and bias metrics are 
shown below. 
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where 𝑦𝑦𝑘𝑘  is the actual data point and 𝑦𝑦𝑘𝑘�  is the 
estimated data point. 

 
3.2.3 Benchmark models 

ARIMA and deep learning models including MLP, 
one-dimensional CNN (1DCNN), LSTM, and GRU were 
implemented and optimised in terms of 
hyperparameters respectively. A multi-channel 1DCNN 
(MC-1DCNN) and our proposed DAF-GAN were 
implemented in the multi-channel settings. Primary 
model hyperparameters are summarised in Table 1. All 
the models were trained on a computer equipped with a 
GeForce RTX 3090. 
 

Table 1. Primary model hyperparameters of models 

Method Primary hyperparameters 

ARIMA p = 24, d = 0, q = 0 

MLP n_fc = 4 

1DCNN n_conv = 3, n_fc = 2 

LSTM n_layers = 2 

GRU n_layers = 2 

MC-1DCNN n_conv = 3, n_fc = 2 

DAF-GAN UNet: n_contract = 6, n_expand = 6 
2DCNN: n_contract = 4 

Notes: p: Number of Autoregressive Terms; d: Number of 
Differentiations; q: Number of Moving Average Terms; n_fc: 

Number of Fully Connected Layers; n_layers: Number of Layers 
in the Recurrent Unit; n_conv: Number of Convolutional 
Layers; n_contract: Number of Contracting Blocks; n_expand: 
Number of Expanding Blocks. 

 
4. RESULTS AND DISCUSSION 

Among the compared methods, MLP shows the 
highest MAPE and RMSE and ARIMA shows the highest 
CV-RMSE and MAE. The performances of ARIMA and 
LSTM in terms of MAPE and RMSE are comparable and 
both are slightly better than MLP. GRU works better than 
LSTM. While showing the biggest bias, 1DCNN performs 
the best among the single-channel methods, and its 
MAPE, CV-RMSE, MAE and RMSE can be reduced by 
30.5%, 37.0%, 44.5% and 46.0% respectively. 

DAF-GAN shows the least error in terms of all of the 
metrics. Compared to other methods, its improvements 
in different metrics fall into the ranges of 21.6%~61.7% 
(MAPE), 24.2%~65.0% (CV-RMSE), 19.2%~68.3% (MAE), 
16.7%~68.1% (RMSE), respectively. DAF-GAN also 
presents the least forecasting bias by showing the lowest 
absolute value of MBE compared to other models. 
Furthermore, it is worth noticing that DAF-GAN shows 
the least standard deviation across all metrics, which 
indicates the highest stability across different buildings. 

As the global pursuit of energy conservation 
intensifies and the urgency of precise HVAC energy 
consumption predictions escalates, the findings of this 
study stand as a beacon of promise for advancing energy-
efficient building automation and management. 
Furthermore, the potential of this method to propel 
applied energy research forward and provide insights for 
decision-making processes underscores its significance in 
the quest to curtail energy consumption and mitigate 
environmental impact. 

 
Table 2. Single-building forecasting results (mean ± standard deviation) 

Method/Metric MAPE (%) CV-RMSE (%) MAE (kWh) RMSE (kWh) MBE (kWh) 

ARIMA 23.3 (±7.0) 29.4 (±8.8) 50.5 (±41.3) 63.1 (±51.2) 3.6 (±3.2) 

MLP 25.6 (±8.6) 29.0 (±10.4) 49.5 (±41.3) 65.9 (±57.7) -4.9 (±5.2) 

1DCNN 18.0 (±4.3) 21.6 (±5.9) 35.7 (±26.5) 46.9 (±35.5) 7.3 (±8.1) 

LSTM 23.1 (±6.8) 28.4 (±8.1) 46.3 (±35.3) 63.2 (±48.1) 1.4 (±7.9) 

GRU 21.5 (±8.9) 26.9 (±11.9) 40.8 (±29.2) 55.8 (±41.5) -3.4 (±17.7) 

MC-1DCNN 12.5 (±5.2) 13.6 (±6.3) 19.8 (±9.1) 25.3 (±11.7) 1.0 (±4.2) 

DAF-GAN* 9.8 (±3.3) 10.3 (±1.6) 16.0 (±8.5) 21.0 (±11.0) -0.1 (±1.4) 
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5. CONCLUSION 
In conclusion, the contribution of this study is two-

fold. Firstly, we introduce a novel framework that 
reconceptualizes forecasting as a problem of conditional 
generation, facilitating the direct utilization of powerful 
deep generative models, such as GANs, for energy 
consumption prediction. Secondly, we present DAF-GAN, 
a novel multi-channel GAN-based approach for day-
ahead building HVAC energy consumption prediction, 
showcasing relative improvements ranging from 17% to 
68% across four distinct error metrics when 
benchmarked against six traditional and deep learning 
models. While practical implementation and broader 
applicability warrant further exploration, our approach 
holds significant potential for advancing energy-efficient 
building automation and management. In future 
research endeavours, emphasis may be placed on the 
application of DAF-GAN in cross-building forecasting, 
evaluating performance across various temporal 
horizons and granularities, and assessing robustness in 
the face of meteorological uncertainties. 
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