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ABSTRACT 
This study explored the relationship between the 

RGB color space and the temperature of hydrogen 
flames with thermal reflection principles. The prediction 
model based on CCD and infrared (IR) image were 
compared. The model based on RGB difference as inputs 
for CCD image showed an average relative error of 
9.8314%. The model based on infrared image RGB values 
showed an average relative error of 6.6652%. 
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1. INTRODUCTION 
Hydrogen is an important clean energy source for 

carbon neutrality and it is colorless, odorless, 
inflammable, and explosive in certain concentrations [1].  

In order to monitor the flame combustion, acoustic 
method [2-4], thermodynamic method [5] and optical 
method [6-13] can be used. While the radiation of 
hydrogen flame was mainly in the range of UV band. The 
traditional visible and far infrared band (>1500 nm) 
method based on spectral radiation distribution face a 
lot of challenge [14-15]. 

This study was aimed to establish a new temperature 
prediction model based on thermal reflection principles 
[16-20], linking the RGB color space of visible light images 
and infrared images to the temperature of hydrogen 
flame.  

2. MATERIAL AND METHODS 
The hydrogen was generated with an HGH-500 

hydrogen generator and combusted in the air (the 
ambient temperature was 32.2°C) through a 1.5-
millimeter-diameter copper tube burner. A stainless-

steel plate, positioned 10 millimeters behind the copper 
tube burner, served as the wall. The combustion process 
was monitored with a CCD camera and an infrared 
thermal imaging camera as shown in Fig 1. 

Two K-type thermocouples, labeled as points A 
(60mm above the burner) and B (30mm below the 
burner), were used to measure the temperature 
changes. The hydrogen gas flow rate was adjusted 
sequentially from 0 mL/min to 500 mL/min. After each 
adjustment, a 5-minute waiting period ensured 
temperature stability. Temperature of the 
thermocouples were recorded every 30 seconds. CCD 
visible light images (631×536 pixels) and infrared images 
(361×311 pixels) were taken at the same time. 

3. RESULTS AND DISCUSSION 

3.1  Color moment and temperature correlation analysis 

The Pearson correlation coefficient between the 
first and second moments of RGB and temperature were 
calculated and showed in Table 1. It showed that there 
was strong relationship between RGB color space 
components and temperature.  

Table 1 Correlation coefficients between moments and 
temperature in RGB color space 

 
Fig. 1. experimental placement 
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 Each color characteristic 
Correlation 
coefficient 

R 
array of first-order moments 0.9688 

array of second-order moments 0.9276 

G 
array of first-order moments 0.7454 

array of second-order moments 0.6994 

B 
array of first-order moments 0.9503 

array of second-order moments 0.9320 

3.2 Model Based on RGB Color Space 

3.2.1 Flame area recognition 

In the non-flame regions, the images only captured the 
reflection and radiation from the stainless-steel plate 
wall. In the flame regions, the images received reflection 
and radiation from both the stainless-steel plate and the 
hydrogen flame. There was a great change of RGB values 
at the edges of the flames. And an inflection point 
detection method was used to delineate the boundaries 
of the flame region. The variation of R value for the 164th 
and 221st rows was depicted in Fig.2 (a). The second 
derivative curve portraying of the R value variation for 
the 164th row was showed in Fig. 2(b). According the R 
value variation, the flame regions were separated for 
both visible light and infrared and images. 

 
(a) Smoothed curve 

 
(b) Second derivative curve 

Fig. 2 Smoothed curve and second derivative curve 
 

3.2.2 The temperature prediction model based on the 
RGB values of the CCD visible light image. 

The functional relationship between temperature 
(measured by thermocouples at points A and B) and the 
corresponding RGB values and RGB differences in the 
visible light images were analyzed and a three-variable 
linear regression model with thermocouple temperature 
as the true flame temperature baseline was showed in 
equation 1 and 2 based A point data. The fitting errors 
for points A and B are shown in table 2. 

Table 2 The comparison between the fitting errors for 
points A and B and the fitting performance 

 MAE MRE RMSE R2 

A 31.89 0.132 39.91 0.94 
B 57.36 0.108 77.73 0.79 

A1 31.90 0.132 39.91 0.94 
B1 57.36 0.108 77.73 0.79 
*Where mean absolute error was abbreviated as MAE, 

root mean square error as RMSE, mean relative error as (MRE), 
and coefficient of determination as R2. A and B refers to using 
RGB as input. A1 and B1 refer to using RGB difference as input. 

The temperature of the flame area was calculated 
with Equation 1 (with RGB values as inputs) and Equation 
2 (with RGB differences as inputs): 

 

{
 
 

 
 

 𝑇xz(𝑖,𝑗) = 15.312𝑅0(𝑖,𝑗) + 34.179𝐺0(𝑖,𝑗) + 22.629𝐵0(𝑖,𝑗)
−6140.2                       𝐿(𝑖,0) ≤ 𝑖 ≤ 𝐿(𝑖,1)

 
 

𝑇𝑥𝑧(𝑖,𝑗) = 32                                  𝑖＜𝐿(𝑖,0), 𝑖＞𝐿(𝑖,1)             

(1) 

{
 
 

 
 

 𝑇xz(𝑖,𝑗) = 15.312∆𝑅0(𝑖,𝑗) + 34.179∆𝐺0(𝑖,𝑗) +

22.629∆𝐵0(𝑖,𝑗) + 72.442     𝐿(𝑖,0) ≤ 𝑖 ≤ 𝐿(𝑖,1)
                    

 
 

𝑇𝑥𝑧(𝑖,𝑗) = 32                                  𝑖＜𝐿(𝑖,0), 𝑖＞𝐿(𝑖,1)             

(2) 

Where : 

𝑇𝑥𝑧(𝑖,𝑗)—The predicted temperature at (i,j) ,(℃)； 

𝑅0(𝑖,𝑗), 𝐺0(𝑖,𝑗),𝐵0(𝑖,𝑗)—The R,G,B value at (i,j)； 

 ∆𝑅0(𝑖,𝑗),∆𝐺0(𝑖,𝑗), ∆𝐵0(𝑖,𝑗) —The difference of R,G,B ；

𝐿(𝑖,0)—The left boundary in the i-th row； 

𝐿(𝑖,1) —The right boundary in the i-th row。 

Fig.3 showed the temperature distribution maps 
corresponding to the predicted temperature matrices.  

For the model based on visible light images with RGB 
values as inputs, anomalies were observed with higher 
temperatures above the flame and lower temperatures 
in the core of the flame. This phenomenon can be 
attributed to two main factors: (1) the influence of the 
background plate wall and (2) the effect of 
environmental lighting. Therefore, when predicting 
hydrogen flame temperatures using CCD images, the 
method of utilizing RGB differences in the images 
appears to be more reasonable and yields improved 
prediction results. 
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Under conditions of a hydrogen gas flow rate of 500 
ml/min, the measured temperatures at various positions 
within the hydrogen flame and predicted value based on 
CCD image RGB differences were copmared and showed 
in Fig. 4. For each pixel position, the thermocouple 
temperature was considered as the ground truth 
temperature. The average relative error across the 16 
pixel positions in the predicted temperature matrix is 
9.8314%, and the root mean square error is 49.3470. 

  
(a) RGB values as input (b) RGB difference as 

input 
Fig.3 Temperature prediction distribution for the 
hydrogen flow rate of 500 ml/min 

  
Fig. 4 (a) The positions of 

the thermocouple 
temperature 

measurement pixels 

Fig.4 (b) Scatter plot of 
thermocouple 

temperature and 
predicted temperature 

 
3.2.3 Temperature prediction model based on RGB of 

infrared thermal imager images 

Using the same method as described in Section 3.2.2, 
temperature analysis and prediction were performed 
with the infrared images. The fitting errors for points A 
and B are shown in table 3. 
 
Table 3 The comparison between the fitting errors for 
points A and B and the fitting performance 

 MAE MRE RMSE R2 

A 17.51 0.036 43.84 0.91 
B  23.60 0.067 27.17 0.97 

A1 17.51 0.036 43.84 0.91 
B1  23.61 0.067 27.17 0.97 

The temperature of the flame area was calculated 
with Equation 3 (with RGB values as inputs) and Equation 
4 (with RGB differences as inputs): 

{
 
 

 
 

 𝑇xz(𝑖,𝑗) = 2.094𝑅0(𝑖,𝑗) + 1.355𝐺0(𝑖,𝑗) + 0.7624𝐵0(𝑖,𝑗)
      −102.93                     𝐿(𝑖,0) ≤ 𝑖 ≤ 𝐿(𝑖,1)

                 
 
 

𝑇𝑥𝑧(𝑖,𝑗) = 32                                  𝑖＜𝐿(𝑖,0), 𝑖＞𝐿(𝑖,1)             

(3) 

{
 
 

 
 

 𝑇xz(𝑖,𝑗) = 2.094∆𝑅0(𝑖,𝑗) + 1.355∆𝐺0(𝑖,𝑗) + 0.7624∆𝐵0(𝑖,𝑗)
+718.36               𝐿(𝑖,0) ≤ 𝑖 ≤ 𝐿(𝑖,1)

                                                                                                      (4)
 

𝑇𝑥𝑧(𝑖,𝑗) = 32                                𝑖＜𝐿(𝑖,0), 𝑖＞𝐿(𝑖,1)             

 

The predicted temperature distribution diagram is 
shown in Fig.5. The temperature prediction based on 
infrared images was more accurate when RGB values 
were used as input. When using the RGB differences 
between infrared images and ambient temperature 
images as input for temperature prediction at different 
hydrogen flow rates, the resulting temperature 
distribution map exhibits a band-like pattern of lower 
temperatures within the flame region. The reason for 
this phenomenon was that at ambient temperature, the 
strip-like low-temperature region corresponds to the 
reflective area of the thermal imager. The reflective area 
of the thermal imager does not conform to the 
assumptions of the model, which reduces the credibility 
of using RGB differences as input for the prediction 
model.The pixel positions for temperature measurement 
were shown in Figure 6, with a total of 16 positions. The 
average relative error between the predicted 
temperature and the actual temperature using the RGB 
value of the infrared image as input was 6.6652%,and the 
root mean square error was 37.1759. 

  
(a) RGB values as input (b) RGB difference as 

input 
Fig. 5 Temperature prediction distribution for the 

hydrogen flow rate of 500 ml/mi 

  
Fig. 6 (a) The positions of 

the thermocouple 
Fig. 6 (b) Scatter plot of 

thermocouple 
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temperature 
measurement pixels 

temperature and 
predicted temperature 

4. CONCLUSIONS 
To address temperature measurement complexities 

in low-emissivity hydrogen flames, the thermal reflection 
principles were used in this study. Two methods: (1) 
using RGB components as input to study their 
relationship with temperature, and (2) using the 
differences between RGB components and room 
temperature images as input to study their relationship 
with temperature were carried out.  

It was showed that CCD images was significantly 
affected by the environment, and with RGB difference 
(method 2) as input achieved higher prediction accuracy 
(average relative error of 9.8314%). The reflective region 
of the thermal imager has a significant impact on infrared 
images, therefore, Method 1 exhibited higher prediction 
accuracy(average relative error of 6.6652%). 
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