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ABSTRACT 
  Photovoltaic (PV) power forecasting plays a 

crucial role in optimizing the operation and planning of 
PV systems, enabling efficient energy management and 
grid integration. However, uncertainties caused by 
fluctuating weather conditions and complex interactions 
between different variables pose significant challenges 
to accurate PV power forecasting. In this study, we 
propose PV-Client (Cross-variable Linear Integrated 
ENhanced Transformer for Photovoltaic power 
forecasting) to address these challenges and enhance PV 
power forecasting accuracy. PV-Client employs a linear 
module to learn trend information in PV power, and 
employs an ENhanced Transformer module to capture 
complex interactions in PV systems. Experiments with 
the real-world PV power dataset have confirmed the 
SOTA performance of PV-Client in PV power forecasting. 
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Transformer  
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1. INTRODUCTION 
Photovoltaic (PV) power, as a clean and renewable 

energy source, has gained significant attention in recent 
years due to its potential for reducing carbon emissions 
and dependence on fossil fuels. The efficient utilization 
of PV energy relies heavily on accurate forecasting of PV 
system output. Accurate PV power forecasting enable 
effective power grid planning, load balancing, and 
resource management, contributing to the overall 

stability and efficiency of energy systems. Additionally, 
PV power forecasting facilitates the integration of PV 
energy into the existing power grid infrastructure, 
enabling the optimal utilization of renewable energy 
sources while ensuring grid reliability and stability [1]. 

However, PV power forecasting is confronted with 
several challenges that make accurate prediction a 
complex task. One of the major challenges arises from 
the inherent variability and uncertainty in weather 
conditions, as PV system output strongly depends on 
solar radiation levels, and rapid changes in solar 
radiation and diurnal patterns, pose challenges in 
capturing and modeling short-term and long-term 
variations accurately. Other weather factors such as 
temperature, cloud cover, and other atmospheric 
conditions can also have impacts on the production of PV 
power [2]. The inaccuracy of weather forecasts 
exacerbates this challenge. Another challenge lies in the 
non-linear relationships between input variables and PV 
power output. Traditional linear models often fail to 
capture the complex interactions and dynamics present 
in PV systems, resulting in less accurate predictions. 
Addressing these challenges and developing accurate PV 
power forecasting methods are of utmost importance to 
ensure the reliable integration and utilization of PV 
energy.  

Numerous research studies have been conducted to 
devise accurate and computationally efficient 
forecasting models for PV power generation. These 
models can be broadly categorized as indirect and direct 
forecasting models. In the indirect forecasting models, 
various methods including numerical weather prediction 
(NWP) [3], statistical approaches [4], and image-based 
methods [5] have been utilized to predict solar radiation 
at different time scales. Subsequently, these forecasted 
solar radiation values, along with other relevant data, 
serve as inputs to estimate the PV power generation. On 
the other hand, the direct forecasting model directly 
predicts the PV power generation using historical PV 
power and associated meteorological data on the basis 
of relatively accurate weather forecast data. The direct 
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forecasting models include persistence models [6], 
statistical models [7], machine learning models [8], and 
hybrid models [9]. The selection between indirect and 

direct forecasting models depends on factors such as 
data availability, computational resources, and specific 
forecasting requirements. In this research study, we have 
relatively sufficient historical data available, and the 
accuracy of weather forecast data is relatively high. 
Therefore, we adopt direct forecasting models. 

Despite significant advancements in PV power 
forecasting technology, to the best of our knowledge, 
there is currently no model that effectively captures 
trend information from historical data while efficiently 
learning the complex nonlinear dependencies between 
weather factors (or other related factors) and PV power. 
To tackle this problem, we propose PV-Client (Cross-
variable Linear Integrated ENhanced Transformer for 
Photovoltaic power forecasting). PV-Client incorporates 
a linear module to learn trend information in PV power 
and utilizes an Enhanced Transformer module to capture 
the intricate interactions within PV systems, as the 
attention mechanism in Transformer is supposed to 
capture the complex non-linear relations between 
features efficiently [10]. This integration of linear and 
non-linear modeling techniques allows PV-Client to 
effectively capture both the global and local patterns in 
the PV power, making it a powerful tool for accurate PV 
power forecasting. Through experiments conducted on 
the real-world PV power dataset, PV-Client has 
demonstrated state-of-the-art (SOTA) performance in PV 
power forecasting.  

2. METHODOLOGY 
The fundamental concept underlying PV-Client is to 

incorporate cross-variable attention in lieu of the typical 
cross-time attention utilized in traditional Transformer 
models. Additionally, a linear module is integrated into 
the model. These designs can enable the model to better 
utilize the variable dependencies and trend information 
in PV power. In this section, we detail the PV-Client 
model components. 

2.1 Cross-variable Transformer 

The cross-variable Transformer module is used to 
learn variable dependencies in place of time 
dependencies in PV power, as shown in Fig. 1. 

The Encoder block consists of a multi-head attention 
(MHA) component and a feed-forward network (FFN) 
component. The input look-back time series (historical 
PV power along with weather data) H is a 2D Tensor with 
the shape of L x C, and the input series needs to be 
flipped first. The cross-variable attention is the key part 
of MHA, which is defined as Eq. (1): 

 

Attentio𝑛(𝐐, 𝐊, 𝐕) = softma𝑥 (
𝐐𝐊⊤

√𝐿
) 𝐕 (𝟏) 

 
where Q is queries, K is keys, and V is values. Q, K and V 
are generally obtained by applying some transformations 
to the original input H, and L is length of input. 
 

 
 

Fig. 1 Cross-variable attention. 
 

The input PV power series is put into the Encoder blocks 
directly, without the embedding layer because the extra 
embedding layer compromises temporal information 
and results in inferior performance. Besides, we remove 
the position encoding layer in the Transformer since 
there are no temporal ordering among different 
variables. After extracting features from Encoder blocks, 
the input series is put into a projection layer and flipped 
to get the prediction of the cross-variable Transformer, 
without passing a decoder block, as we find that 
including a Decoder leads to decreased performance. 
The process of projection is defined as: 

 
𝐅trans = Proj(𝐗enc).Permute(1,0) (2) 

 
where 𝐗enc is the output of Encoder blocks, and 𝐅trans 
is the Transformer's prediction. The cross-variable 
Transformer's prediction often contains the details of the 
PV power. 

2.2 Linear Integration and ReVIN Modules 

The integrated linear module is used to learn trend 
information from the PV power, and it is channel-
independent. The linear model is deemed proficient in 
extracting trend information. The input PV power series 
is flipped and put into linear module to get the linear's 
prediction, as defined: 

 

𝐅lin = Linear(𝐇.Permute(1,0)).Permute(1,0) (3) 

 
The cross-variable Transformer's prediction and the 

linear's prediction are combined with learnable weights 
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𝐰trans and 𝐰lin to get the final prediction of PV power, 
as described in:  

 
𝐅 = 𝐰trans × 𝐅trans + 𝐰lin × 𝐅lin (4) 

 

To address the issue of distribution shift in PV 
power, a reversible instance normalization (RevIN) [11] 
module is adopted in the model, which is symmetrically 
structured to remove and restore the statistical 
information of a PV power series instance and promote 
the model's stability during forecasting. 

2.3 Overall PV-Client Architecture 

PV-Client uses the linear module to capture the 
trend information and the enhanced Transformer 
module to capture nonlinear information and cross-
variable dependencies in PV power. Fig.2 shows the 
architecture of PV-Client. The input PV power series is 
firstly smoothed with the RevIN module. Then the 
smoothed series is put into the cross-variable 
Transformer module and the linear module respectively. 
The final prediction of PV power is the combination of 
these two module's predictions. 

3.  EXPERIMENT 

3.1 Data description and experiment setting 

In this study, we take the PV power data of Jingang 
Photovoltaic Power Station in ShenZhen, China, as a 
study case. In the experiments, PV-Client utilize historical 
PV power data from the previous two days and weather 
forecast data, including radiation, temperature, 
humidity, wind speed, and surface pressure. While 
radiation strongly influences PV power output, other 

weather factors may also impact it. As both the PV power 
and weather data are sampled hourly, the input length is 
192 with a feature dimension of six. We predict the PV 
power for the following day as day-ahead forecasts are 

critical for power generation scheduling. In terms of 
model training, we set the number of Encoder layers to 
2 and the hidden state dimension 128. We use the ADAM 
optimizer with a learning rate between 1e-3. The batch 
size is 128, and the training epoch is set to 30. The initial 
weight for the Transformer model 𝐰trans and the initial 
weight for the linear model 𝐰lin are both set to 1.     

3.2 PV power forecasting results 

To conduct the PV power forecasting experiments, 
the models are trained using nearly a year of historical 
offline data. However, we test the models online and 
follow the online results for one month (from 9.10-
10.10). This evaluation process is taken to more 
objectively measure the performance of the models. 

To evaluate the models, we utilize both the mean 
square error (MSE) and accuracy metrics. The accuracy 
metric is used to assess the relative error of each model's 
predictions, as defined in:  

 

Acc = 1 −
√∑ (𝑛

𝑖=1 𝐺𝑖  −  𝑃𝑖)2

Cap√𝑛
(5) 

 

where 𝐺𝑖  represents the actual PV power output for a 
given time step i, while 𝑃𝑖 represents the predicted PV 
power output, and Cap represents bootCapacity.   

 

 
 

Fig. 2 PV-Client architecture. The RevIN module is used to address the issue of distribution shift of PV power series. The linear 
model is used to capture trend information, while the enhanced Transformer model is used to capture nonlinear and cross-

variable dependencies in PV power series. 
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We compare six baseline models: Linear Regression 
(LR) [12], Support Vector Regression (SVR) [13], XGBoost 
[14], LightGBM [15], Gated Recurrent Unit (GRU) [16], as 
well as a cross-time based Transformer model (T-
Transformer for short). LR is a basic and widely used 
statistical model that aims to establish a linear 
relationship between the input variables and the output 
variable, while SVR is a regression model that attempts 
to find a hyperplane in a high-dimensional feature space 
that optimally separates the data points and creates a 
regression line with minimal error. XGBoost and 
LightGBM are both gradient boosting frameworks that 
employ an ensemble learning technique. They create a 
strong predictive model by sequentially adding weak 
models and focusing on the data points with higher 
residuals. GRU is a type of recurrent neural network that 
utilizes gating mechanisms to selectively update and 
forget information in the hidden state, allowing it to 
capture long-term dependencies and make accurate 
predictions for time series data. T-Transformer utilize 
efficient attention mechanism to capture temporal 
dynamics and dependencies across different time steps 
in time series data.   

The prediction MSE and accuracy of different 
models are shown in Table 1. Remarkably, PV-Client 

achieves the most favorable outcomes in both MSE and 
accuracy metrics, indicating its superior performance 
compared to the other models. 

Fig. 3 visually demonstrates the exceptional 
prediction performance of PV-Client, while also 
providing a comparison of the predictions made by LR 
and SVR. The horizontal axis represents time, while the 
vertical axis represents the values of PV power. The red 
line corresponds to the actual PV power values, the light 
blue line represents the predictions made by PV-Client, 
the dark blue line represents the LR’s predictions, and 
the purple line represents the SVR’s predictions. As 
shown, it is evident that PV-Client's predictions are much 
closer to the actual PV power output when compared to 
the predictions made by LR and SVR. 

Table 1. MSE and accuracy of different models. The best 
result is indicated in bold font. 

Model MSE Accuracy      

LR 1693.707 0.894 

SVR 2043.094 0.887 

XGBoost 1879.130 0.890 

LightGBM 1952.271 0.889 

GRU 1555.194 0.881 

T-Transformer 4167.539 0.835 

PV-Client (ours) 1469.132 0.903 

 

 

Fig. 3 PV power forecasting showcases of different models. 

 

4. CONCLUSION 
In this study, we proposed PV-Client, a more 

accurate and efficient model for PV power forecasting. In 
PV-Client, the trends of PV power are predicted by the 
linear module, and the cross-variable dependencies are 
obtained from the enhanced Transformer module. By 
leveraging the combined strength of these components, 

PV-Client effectively captures both global and local 
patterns in the PV power and demonstrates superior 
performance in PV power forecasting. 
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