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ABSTRACT 
This paper proposes a 24/7 Carbon-Free Electric 

Fleet digital twin framework for modeling, controlling, 
and analyzing an electric bus fleet, co-located solar 
photovoltaic arrays, and a battery energy storage 
system. The framework consists of forecasting modules 
for marginal grid emissions factors, solar generation, 
and bus energy consumption that are input to the 
optimization module, which determines bus and battery 
operations at minimal electricity and emissions costs. 
We present a digital platform based on this framework. 
For a case study of Stanford University’s Marguerite 
Shuttle, the platform reduced peak charging demand by 
99%, electric utility bill by $2779, and associated carbon 
emissions by 100% for one week of simulated 
operations for 38 buses. When accounting for 
operational uncertainty, the platform still reduced the 
utility bill by $784 and emissions by 63%. 
 
Keywords: decarbonization, electric buses, digital twin, 
charging scheduling, battery storage, optimal planning 

1. INTRODUCTION 
In 2022, energy production and transportation 

contributed to more than 50% of natural gas and 
petroleum usage in the United States [1]. According to 
the United Nations, fossil fuels are the leading 
contributors to global climate change, representing 
more than 75% of greenhouse gas emissions and close 
to 90% of all carbon dioxide emissions [2]. Thus, 
ensuring clean electricity generation and transportation 
is crucial to eliminating greenhouse gas emissions. 

Vehicle electrification is a viable means of reducing 
emissions. Studies project there will be more than 300 

million light-duty electric vehicles (EVs) worldwide in 
2035 [3]. For medium- and heavy-duty vehicles, 
ordinances like the 2018 Innovative Clean Transit 
Regulation require that all California public transit 
agency fleets be zero-emission by 2040 [4]. 

To efficiently meet the emissions reduction target 
and mitigate global warming, electricity demand from 
EV fleet charging must come from non-fossil fuel 
sources. Currently, a battery EV charging on the US 
grid's most carbon-intensive power mix produces 30% 
more emissions than a hybrid counterpart [5]. 
Therefore, monitoring the grid for times of lower 
carbon emissions is necessary to maximize the use of 
cleaner energy when coordinating EV charging. 

However, coordinating charging for medium and 
heavy-duty EV fleets while respecting their schedule 
constraints is challenging. Many papers concentrate on 
charging coordination to reduce costs [6, 7]. Others 
focus on bus fleet operation and charging management 
[8]. The daily cost of charging and deadhead driving was 
minimized with a mixed-integer linear program (MILP) 
model in a city case study with available solar and wind 
energy sources. Similar works also adopt a MILP model 
for coordinating EV fleets and respective charging 
schedules and locations [9, 10, 11, 12]. 

Several works have also used other techniques, 
such as random search with particle swarm 
optimization and a polynomial time algorithm in a real-
world case study [13]. Other works explore using a 
Markov decision process to minimize electricity usage 
and cost [14] and nonlinear programming to minimize 
electricity cost and battery aging [15].  

Many of these electric bus fleet charging and 
operation coordination works, however, do not account 
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for emissions, the addition of co-located storage, or 
electricity demand charges [16]. The methods in [17] 
and [18] minimize emissions but do not jointly optimize 
for electricity costs, vehicle operations, or integration of 
battery storage. In [17], compared to the baseline, 
results demonstrated that the method could reduce 
26% of carbon emissions, still far from a fully 
decarbonized bus fleet. 

1.1 Contributions 

To the best of the authors' knowledge, no other 
study has proposed a platform that simultaneously 
accounts for emissions and costs in the route 
assignment, charge scheduling, battery storage 
dispatch, and photovoltaic (PV) solar coordination joint 
problem. Thus, the main contributions of this work are 
as follows:  

• A digital twin framework composed of forecast 
modules and an optimization module to coordinate 
PV solar, storage, and routes and charging 
schedules of an electric bus fleet system. 

• A demonstration of the proposed approach in a 
real-world context using real data from the Stanford 
Marguerite Shuttle transit system. 

• Forecasting models that predict PV solar generation 
and marginal emissions factors, and a surrogate 
model that estimates bus energy consumption 
while accounting for variability in factors. 

• An optimization module that solves a MILP to 
determine bus-run and charging assignments and 
battery storage dispatching while minimizing 
electricity and carbon emissions costs. 
An overview of the digital twin is shown in Fig. 1, 

summarizing the various modules, input features that 
are predicted or known, and platform outputs. We 
demonstrate the application of the 24/7 Carbon-Free 
Electric Fleet (CFEF) Platform for the Stanford 
Marguerite Shuttle in different scenarios with varying 
times of year, solar generation capacities, inclusion of 
battery storage. We then compare these simulated 
optimal results with the actual Marguerite Shuttle 
charging profiles and costs in 2023. 

1.2 Paper Organization 

The remainder of the paper is organized as follows. 
Section 2 presents the forecasting, surrogate, and 
optimization models that constitute the 24/7 CFEF 
Platform. Section 3 describes the case study which 
demonstrates the platform. Section 4 presents the 
results and their main takeaways. Finally, Section 5 
summarizes conclusions and suggests future work. 

2. PROBLEM SETUP  

2.1 Forecasting 

We use simple forecast modules for PV solar and 
marginal grid emissions factors, which are input to the 
optimization module. For solar, we used a seasonal 
moving average where the next day forecast is the 
average of the last three days. For emissions, we use 
the marginal emissions forecasts provided by the 
California Independent System Operator (CAISO) Self-
Generation Incentive Program API 1 . As CAISO API 
forecasts up to three days only, values from the same 
day of week of the previous week are used to forecast 
emissions beyond three days. Lastly, we also forecast 
weather, which is input to the surrogate model that 
predicts bus energy consumption. We use a daily 
moving average of the last two days. We evaluate 
forecast accuracy with Weighted Mean Absolute 
Percentage Error (𝑊𝑀𝐴𝑃𝐸).  

2.2 Surrogate Model 

Many factors influence the energy consumption of a 
bus, including driver behavior, battery aging, weather 
(which can affect HVAC usage and battery 
performance), bus occupancy, and route taken. To 
predict uncertain energy consumption, we use a 
Gaussian Process-based surrogate model, which is a 
probabilistic model that allows us to infer a distribution 
over data points based on known input-output values 
[19, 20].  

We assume that the output 𝑦 , bus energy 
consumption average for a given route in a given day, is 
mapped by a function 𝑓(𝒙)  added with noise 
𝜖~𝒩(0, 𝜎2). The vector 𝒙 comprises a set of features 
that account for uncertainty in bus energy 
consumption, including bus size (large or small), route 

 
1 https://content.sgipsignal.com/api-documentation 

 
Fig. 1. Schematic of Digital Twin Framework.  
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taken, weather variables, and whether the day is a 
regular school day. The weather variables are obtained 
via the Stanford Western Weather group2 and include 
daily max, min, and average temperature (℉); daily rain 
(𝑖𝑛); daily solar radiation (𝑐𝑎𝑙/𝑐𝑚2); Heating Degree 
Days (𝐻𝐷𝐷𝑠) and Cooling Degree Days (𝐶𝐷𝐷𝑠).  

A set of known 𝒙 , 𝑋 = {𝒙(1), 𝒙(2), … , 𝒙(𝑚)} 
associated to the respective set of bus energy average 

consumption 𝒚 = 𝑦(1), 𝑦(2), … , 𝑦(𝑚)}  can be used to 
predict the values of unmapped energy consumption, �̂�, 
from a set of unmapped 𝑋∗  [19, 20]. The training 
dataset comprises of the last 30 days, while the next 
seven days are used to test the trained surrogate model 
using metrics like the Mean Squared Error (𝑀𝑆𝐸) and 
Coefficient of Determination (𝑅2). 

2.3 Optimization 

The optimization module of the 24/7 CFEF Platform 
determines bus-run assignments, bus charging, and 
battery storage charging/discharging at minimum cost, 
which includes electric utility energy and demand 
charges, revenue from power injected back to the grid, 
and carbon emissions cost. We model this optimization 
problem as a MILP, described in Eq. (17), with decision 
variables listed in Table 1. Fig. 2 shows the key power 
flow decision variables and their relationship with the 
system components. The problem is solved for a 
horizon consisting of a set of equidistant time steps, 𝒯, 
of duration Δt  in hours, for a set of heterogeneous 
buses ℬ, and for operating a set of bus runs ℛ. 

 
Decision 
Variable 

Domain Description 

𝑦𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡  {0, 1}|𝒯| Indicator for battery charging 

𝑦𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡  {0, 1}|𝒯| Indicator for battery discharging 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡 ℝ≥0
|𝒯|

 State of charge of battery 

𝑃𝑠𝑜𝑙𝑎𝑟
𝑏𝑎𝑡𝑡  ℝ≥0

|𝒯|
 Power from solar to battery 

𝑃𝑏𝑎𝑡𝑡  ℝ|𝒯| Battery power 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟
𝑏𝑎𝑡𝑡  ℝ≥0

|𝒯|
 

Power discharged from 
battery to charger 

𝑃𝑔𝑟𝑖𝑑,𝑐ℎ𝑎𝑟𝑔𝑒𝑟
𝑏𝑎𝑡𝑡  ℝ≥0

|𝒯|
 Power from grid to charge battery 

𝑃𝑔𝑟𝑖𝑑,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡  ℝ≥0

|𝒯|
 Power discharged from battery to grid 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟  ℝ≥0
|𝒯|

 Charger power 

𝑃𝑔𝑟𝑖𝑑
𝑐ℎ𝑎𝑟𝑔𝑒𝑟

 ℝ≥0
|𝒯|

 Power from grid to charger 

𝑃𝑠𝑜𝑙𝑎𝑟
𝑐ℎ𝑎𝑟𝑔𝑒𝑟

 ℝ≥0
|𝒯|

 Power from solar to charger 

[𝑦𝑏]𝑏 ∈ ℬ {0, 1}|𝒯| Indicator for charging for bus 𝑏 

[𝑆𝑜𝐶𝑏]𝑏 ∈ ℬ ℝ≥0
|𝒯|

 State of charge of bus 𝑏 

[𝑃𝑏]𝑏 ∈ ℬ ℝ|𝒯| Power of bus 𝑏 

[𝑃𝑐ℎ𝑎𝑟𝑔𝑒
𝑏 ]

𝑏 ∈ ℬ
 ℝ≥0

|𝒯|
 Charging power of bus 𝑏 

[𝑥𝑠]𝑠 ∈ 𝒮  {0, 1}|ℬ𝑠| × |ℛ𝑠| Assignment matrix for buses and runs of type 𝑠 

𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

 ℝ≥0

𝑛𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒
 Maximum power from grid 

𝑃𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑎𝑟  ℝ≥0

|𝒯|
 Power from solar to grid 

𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡 ℝ≥0 Initial state of charge of battery 

[𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏 ]

𝑏 ∈ ℬ
 ℝ≥0 Initial state of bus 𝑏 

Table 1: Decision variables used in the optimization model. All 

power variables are in units of 𝑘𝑊. 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡 and [𝑆𝑜𝐶𝑖𝑛𝑖𝑡

𝑏 ]𝑏 ∈ ℬ 
can also be fixed inputs. 

 

 
2 https://stanford.westernweathergroup.com/ 

The following equations model the stationary 
battery storage for the system: 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡[1] = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡 (1) 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡[1] = 𝑆𝑜𝐶𝑏𝑎𝑡𝑡[|𝒯|] (2) 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡[𝑡] ≥ 𝑆𝑜𝐶𝑚𝑖𝑛
𝑏𝑎𝑡𝑡 ∀𝑡 ∈ 𝒯 (3) 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡[𝑡] ≤ 𝑆𝑜𝐶𝑚𝑎𝑥
𝑏𝑎𝑡𝑡 ∀𝑡 ∈ 𝒯 (4) 

𝑃𝑏𝑎𝑡𝑡[𝑡] = 𝜂𝑏𝑎𝑡𝑡(𝑃𝑔𝑟𝑖𝑑,𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡] + 𝑃𝑠𝑜𝑙𝑎𝑟

𝑏𝑎𝑡𝑡 [𝑡]) 

− 
1

𝜂𝑏𝑎𝑡𝑡
(𝑃𝑔𝑟𝑖𝑑,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑏𝑎𝑡𝑡 [𝑡]  + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟
𝑏𝑎𝑡𝑡 [𝑡]) ∀𝑡 ∈ 𝒯 

(5) 

𝑆𝑜𝐶𝑏𝑎𝑡𝑡[𝑡] = 𝑆𝑜𝐶𝑏𝑎𝑡𝑡[𝑡 − 1] +
𝑃𝑏𝑎𝑡𝑡[𝑡]∆𝑡

𝐸𝑏𝑎𝑡𝑡
 

∀𝑡 ∈  {2, . . . , |𝒯|} 

(6) 

𝑃𝑔𝑟𝑖𝑑,𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡] + 𝑃𝑠𝑜𝑙𝑎𝑟

𝑏𝑎𝑡𝑡 [𝑡] ≤ 𝑦𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡]𝑃

𝑏𝑎𝑡𝑡
 ∀𝑡 ∈ 𝒯 (7) 

𝑃𝑔𝑟𝑖𝑑,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡] + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟

𝑏𝑎𝑡𝑡 [𝑡] ≤ 𝑦𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡]𝑃𝑏𝑎𝑡𝑡  

∀𝑡 ∈ 𝒯 
(8) 

𝑦𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡] + 𝑦𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑏𝑎𝑡𝑡 [𝑡] ≤ 1 ∀𝑡 ∈ 𝒯 (9) 

 

Eq. (1) sets the battery state of charge (𝑆𝑜𝐶) at the 

first time step to 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡 ∈ [0, 1], which can be a fixed 

input or a decision variable. Eq. (2) is the periodicity 
constraint setting the 𝑆𝑜𝐶 at the last time step equal to 
that of the first time step. Eq. (3) and Eq. (4) bound the 
𝑆𝑜𝐶 to maintain a desired backup power reserve or 
mitigate battery degradation. Eq. (5) defines the power 
flow within the battery, where 𝜂𝑏𝑎𝑡𝑡  is the battery's 
charging and discharging efficiency. Eq. (6) defines the 
𝑆𝑜𝐶 evolution, where 𝐸𝑏𝑎𝑡𝑡 is the battery's rated energy 
capacity in 𝑘𝑊ℎ. Eq. (7) and Eq. (8) bounds the battery 

charging and discharging power, where 𝑃
𝑏𝑎𝑡𝑡

 and 𝑃𝑏𝑎𝑡𝑡 
are the rated charging and discharging rate limits of the 
battery, respectively. Eq. (9) is the complementarity 
constraint that ensures the battery cannot 
simultaneously charge and discharge. The battery 
model assumes it can charge or discharge up to its rated 
power at any 𝑆𝑜𝐶. 

Buses can park or charge at the bus depot, where 
the chargers and on-site PV solar are located, and 
where they begin and end each run. Each bus is 

 
Fig. 2. Schematic of power flow as modeled in the 

optmization problem. 
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characterized by a type 𝑠 ∈  𝒮, comprised of varying 
size, energy consumption, charging speed, and battery 
capacity. Each run 𝑟 ∈  ℛ has a specified start and end 
time in 𝒯 and a specified type 𝑠 ∈  𝒮 for the type of 
buses that serve 𝑟. The following equations model each 
bus 𝑏 ∈  ℬ: 

𝑆𝑜𝐶𝑏[1] = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏  (10) 

𝑆𝑜𝐶𝑏[1] = 𝑆𝑜𝐶𝑏[|𝒯|] (11) 

𝑆𝑜𝐶𝑏[𝑡] ≥ 𝑆𝑜𝐶𝑚𝑖𝑛
𝑏  ∀𝑡 ∈ 𝒯 (12) 

𝑆𝑜𝐶𝑏[𝑡] ≤ 𝑆𝑜𝐶𝑚𝑎𝑥
𝑏  ∀𝑡 ∈ 𝒯 (13) 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒
𝑏 [𝑡] ≤ 𝜂𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝜂𝑏𝑚𝑖𝑛 (𝑃

𝑏
, 𝑃

𝑐ℎ𝑎𝑟𝑔𝑒𝑟
) 

∀𝑏 ∈ ℬ, ∀𝑡 ∈ 𝒯 
(14) 

𝑃𝑏[𝑡] = 𝑃𝑐ℎ𝑎𝑟𝑔𝑒
𝑏 [𝑡] − ∑ 𝑥𝑠[𝑏, 𝑟]

𝑟 ∈ ℛ𝑠,𝑡

𝐸𝑟,𝑠 

∀𝑏 ∈ ℬ, ∀𝑡 ∈ 𝒯, ∀𝑠 ∈ 𝒮 

(15) 

𝑆𝑜𝐶𝑏[𝑡] = 𝑆𝑜𝐶𝑏[𝑡 − 1] +
𝑃𝑏[𝑡]∆𝑡

𝐸𝑏
 ∀𝑡 ∈  {2, . . . , |𝒯|} (16) 

Eq. (10) sets the initial 𝑆𝑜𝐶 of bus 𝑏. Eq. (11) is the 
periodicity constraint. Eq. (12) and Eq. (13) bound the 
bus’ 𝑆𝑜𝐶, used for leaving a bus battery reserve to 
buffer against operational uncertainties or to mitigate 
bus battery degradation. Eq. (14) upper bounds the 
charging power of the bus, where 𝜂𝑐ℎ𝑎𝑟𝑔𝑒𝑟  is the 

charging supply equipment's efficiency, 𝜂𝑏  is the bus 

battery's charging efficiency, 𝑃
𝑏
 is the bus’ maximum 

charging (and discharging) rate, and 𝑃
𝑐ℎ𝑎𝑟𝑔𝑒𝑟

 is the 
charger’s maximum charging rate. Eq. (15) determines 
the power flow within the bus’ battery, where 𝐸𝑟,𝑠 is 

the energy consumed in 𝑘𝑊ℎ  by a bus of type 𝑠 
completing run 𝑟, and ℛ𝑠,𝑡 is the subset of runs with 

buses of type 𝑠 and are in service at time 𝑡. Eq. (16) 
defines the 𝑆𝑜𝐶  evolution, where 𝐸𝑏𝑎𝑡𝑡  is the bus 
battery's rated energy capacity in 𝑘𝑊ℎ. This bus model 
assumes a constant charging curve (charge power is not 
limited by 𝑆𝑜𝐶) and that the chargers and buses are 
capable of throttling the charging power. 

Finally, the optimization problem Eq. (17) combines 
the above battery storage and bus modeling equations 
with other system decision variables and constraints 
and a cost minimization objective function: 

min
𝑇𝑎𝑏𝑙𝑒 1

∑ ∆𝑡

𝑡 ∈ 𝒯

(𝑃𝑔𝑟𝑖𝑑
𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] + 𝑃𝑔𝑟𝑖𝑑,𝑐ℎ𝑎𝑟𝑔𝑒

𝑏𝑎𝑡𝑡 [𝑡]) 

⋅ (𝑝𝐶𝑂2
𝐶𝑂2

𝑔𝑟𝑖𝑑
[𝑡] + 𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑡]) 

(17a) 

+ ∑ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑

[𝑖]𝑝𝑑𝑒𝑚𝑎𝑛𝑑[𝑖]

𝑛𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒

𝑖=1

 (17b) 

− ∑ ∆𝑡

𝑡 ∈ 𝒯

(𝑃𝑔𝑟𝑖𝑑,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑏𝑎𝑡𝑡 [𝑡] + 𝑃𝑔𝑟𝑖𝑑

𝑠𝑜𝑙𝑎𝑟[𝑡])

⋅ 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑟𝑒𝑣𝑒𝑛𝑢𝑒[𝑡] 

(17c) 

−λ (𝑆𝑜𝐶𝑏𝑎𝑡𝑡[1] + ∑ 𝑆𝑜𝐶𝑏

𝑏 ∈ ℬ

[1]) (17d) 

subject to 
Stationary Battery constraints, Eqs. (1) – (9) 

 

Bus constraints ∀𝑏 ∈  ℬ, Eqs. (10) – (16) 

∑ 𝑥𝑠
𝑏,𝑟

𝑏 ∈ ℬ𝑠 

= 1    ∀𝑟 ∈ ℛ𝑠 , ∀𝑠 ∈ 𝒮 (17e) 

∑ 𝑥𝑠
𝑏,𝑟

𝑟 ∈ ℛ𝑠,overlap,𝑖 

≤ 1    ∀𝑏 ∈ ℬ𝑠  

∀ℛ𝑠,overlap,𝑖  ∈  (ℛ𝑠,overlap,𝑖)
𝑖 ∈ 𝐼

, ∀𝑠 ∈  𝒮 

(17f) 

∑ 𝑥𝑠
𝑏,𝑟

𝑟 ∈ ℛ𝑠,𝑡

+ 𝑦𝑏[𝑡] ≤ 1   ∀𝑏 ∈  ℬ𝑠 , ∀𝑡 ∈  𝒯, ∀𝑠 ∈  𝒮 (17g) 

∑ 𝑦𝑏

𝑏 ∈ ℬ

[𝑡] ≤ 𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑟    ∀𝑡 ∈  𝒯 (17h) 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] = 𝑃𝑔𝑟𝑖𝑑
𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] + 𝑃𝑠𝑜𝑙𝑎𝑟

𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟
𝑏𝑎𝑡𝑡 [𝑡] 

∀𝑡 ∈  𝒯 
(17i) 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] = ∑
𝑃𝑐ℎ𝑎𝑟𝑔𝑒

𝑏 [𝑡]

𝜂𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝜂𝑏
,

𝑏 ∈ ℬ

∀𝑡 ∈  𝒯 (17j) 

𝑃𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑎𝑟[𝑡]  =  𝑃𝑠𝑜𝑙𝑎𝑟[𝑡] − 𝑃𝑠𝑜𝑙𝑎𝑟

𝑏𝑎𝑡𝑡 [𝑡] − 𝑃𝑠𝑜𝑙𝑎𝑟
𝑐ℎ𝑎𝑟𝑔𝑒𝑟[𝑡] ∀𝑡 ∈  𝒯 (17k) 

𝑃𝑔𝑟𝑖𝑑[𝑡] ≤ 𝑃𝑚𝑎𝑥
𝑔𝑟𝑖𝑑[𝑖] 

∀𝑖 ∈  {1, . . . , |𝑛𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒|}, ∀𝑡 ∈  𝒯𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒 𝑖 
(17l) 

∑   𝑆𝑜𝐶𝑏
𝑏 ∈ ℬ [𝑡]𝐸𝑏

∑   𝐸𝑏𝑏 ∈ ℬ
≥ 𝑆𝑜𝐶𝑚𝑖𝑛

𝑓𝑙𝑒𝑒𝑡
 ∀𝑡 ∈  𝒯 (17m) 

 
In the objective function, the first term, Eq. (17a), 

includes the electric energy charges and carbon 
emissions cost. The energy consumed at time 𝑡 from the 
grid loads, the battery storage and the chargers, is 
multiplied by the sum of the time-of-use energy price 
𝑝𝑒𝑛𝑒𝑟𝑔𝑦[𝑡] ($/𝑘𝑊ℎ) and the per-energy carbon price, 

which is the product of carbon price, 𝑝𝐶𝑂2
[𝑡] ($/𝑡𝐶𝑂2) 

and marginal grid emissions factor, 𝐶𝑂2
𝑔𝑟𝑖𝑑[𝑡] 

(𝑡𝐶𝑂2/𝑘𝑊ℎ). The second term, Eq. (17b), is the sum of 
the 𝑛𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒  demand charges, for which each 

demand charge 𝑖 is the product of the maximum power 
during that demand charge and its price, 
𝑝𝑑𝑒𝑚𝑎𝑛𝑑[𝑖] ($/𝑘𝑊). The third term, Eq. (17c), is the 
revenue or cost offset obtained by injecting power back 
into the grid at an energy price of 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑟𝑒𝑣𝑒𝑛𝑢𝑒 ($/

𝑘𝑊ℎ). Lastly, the fourth term, Eq. (17d), is a small 
reward, weighted by 𝜆, that allows the optimization 
problem to favor solutions with higher battery and bus 
initial 𝑆𝑜𝐶 to allow for greater operational flexibility, 
with negligible impact to the total objective. This term 

only has an effect when 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡  and 𝑆𝑜𝐶𝑖𝑛𝑖𝑡

𝑏  ∀𝑏 ∈
 ℬ are decision variables. As this term is not actual 
revenue, it is subtracted from the optimal objective in 
post-optimization. 

In the constraints, Eq. (17e) enforces that among 
the subset of buses of type 𝑠, ℬ𝑠, exactly one bus is 
assigned to run 𝑟. This is repeated for all runs of type 𝑠, 
denoted by ℛ𝑠 , and for all types 𝑠 ∈ 𝒮 . Eq. (17f) 
enforces that a bus 𝑏 of type 𝑠 can only serve at most 
one run at a given time, where 𝐼 indexes all subsets 
ℛ𝑠,𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝑖 of runs of type 𝑠 that collectively share at 

least one time step of overlap. Eq. (17g) enforces that a 
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bus 𝑏 cannot both serve a run and charge at a given 
time 𝑡. Eq. (17h) upper bounds the number of buses 
that can charge at time 𝑡 by the number of charger 
plugs, 𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑟. Eq. (17i) defines the supply of charger 

power, which can come from the grid, PV solar, or 
battery storage. Eq. (17j) defines the demand of charger 
power, which is the sum of the charging power of the 
buses after accounting for losses. Eq. (17k) defines the 

surplus PV solar generated. Because 𝑃𝑔𝑟𝑖𝑑
𝑠𝑜𝑙𝑎𝑟  ∈  ℝ≥0, the 

battery storage and the chargers are constrained to not 
exceed the available solar generation. Eq. (17l) defines 
the maximum power during each demand charge 
period 𝑖, where 𝒯𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒,𝑖 is the set of time steps 

in demand charge period 𝑖. Finally, Eq. (17m) lower 

bounds the fleet-wide average 𝑆𝑜𝐶  to 𝑆𝑜𝐶𝑚𝑖𝑛
𝑓𝑙𝑒𝑒𝑡

, 

weighted by each bus’ battery capacity. When 

𝑆𝑜𝐶𝑚𝑖𝑛
𝑏 < 𝑆𝑜𝐶𝑚𝑖𝑛

𝑓𝑙𝑒𝑒𝑡
, this constraint ensures not all 

buses are near its minimum charge limit simultaneously. 
The optimization model in Eq. (17) can be used for 

real-time operation with model predictive control. 

Specifically, 𝑃𝑠𝑜𝑙𝑎𝑟[𝑡], 𝐶𝑂2
𝑔𝑟𝑖𝑑[𝑡], and 𝐸𝑟,𝑠 ∀𝑟 ∈ ℛ, ∀𝑠 ∈

 𝒮 are prediction inputs from the solar forecasting 
module, emissions forecasting module, and the 
surrogate model of the bus energy consumption, 

respectively. 𝑆𝑜𝐶𝑖𝑛𝑖𝑡
𝑏𝑎𝑡𝑡 and 𝑆𝑜𝐶𝑖𝑛𝑖𝑡

𝑏  ∀𝑏 ∈  ℬ  define the 
system's initial state which can be updated from the 
current battery storage and bus state of charge 
measurements. 

3. CASE STUDY 
Based on the digital twin framework presented in 

Section 2, we develop a platform in Python for 
simulating optimal electric bus fleet operations for a 
case study of Stanford University's Marguerite Shuttle3, 
which serves approximately 15 publicly-open routes on 
and off campus and has an annual ridership of over 2.74 
million. To develop the digital twin, we used data from 
(i) bus telemetry, which includes average energy 
consumption for each route and bus of a given size, (ii) 
generation profiles of the PV solar array located at the 
Marguerite bus depot, (iii) CAISO marginal grid 
emissions factors, (iv) weather-related features, and (v) 
Stanford academic calendar data.  

The Marguerite fleet has three bus models, BYD 
models K7, K9, and K9M, with battery capacity 𝐸𝑏of 
180𝑘𝑊ℎ , 324𝑘𝑊ℎ , and 313𝑘𝑊ℎ , respectively. K7 
buses are type “small” whereas K9 and K9M buses are 
type “large” and all have a charging efficiency of 𝜂𝑏 =

 
3 https://transportation.stanford.edu/marguerite 

0.9. When not serving a route, the buses are located at 
a single bus depot with parking spaces and 𝑛𝑐ℎ𝑎𝑟𝑔𝑒𝑟 =

24  chargers rated at �̅�𝑐ℎ𝑎𝑟𝑔𝑒𝑟 = 80𝑘𝑊 AC with an 
efficiency of 𝜂𝑐ℎ𝑎𝑟𝑔𝑒𝑟 = 0.95 ; from data, charging 

power is observed to be constant regardless of 𝑆𝑜𝐶. 
Each Marguerite route is divided into scheduled runs 
assigned to specific buses. A run begins at the bus 
depot, completes a specified number of loops of a given 
route, and ends at the bus depot. This study considers 
38 Stanford-operated electric buses with routes divided 
into 255 runs per week in January and March and 261 
runs in May. A fleet average minimum 𝑆𝑜𝐶  of 

𝑆𝑜𝐶𝑚𝑖𝑛
𝑓𝑙𝑒𝑒𝑡

= 0.5 is used.  

A 1.8𝑀𝑊 array of rooftop PV solar panels located 
at the bus depot provide carbon-free energy to the 
charging stations. The solar system is not exclusively 
used for bus charging; university facilities use any 
surplus electricity generation. Thus, the price of energy 
revenue, 𝑝𝑒𝑛𝑒𝑟𝑔𝑦,𝑟𝑒𝑣𝑒𝑛𝑢𝑒, for power injected back to the 

grid from solar surplus or battery storage discharging is 
assumed to be equal to the price for energy 
consumption, 𝑝𝑒𝑛𝑒𝑟𝑔𝑦, in this case study. Fig. 3 (left) 

depicts the average solar profile for January, March, 
and May 2023. The amount of solar varies considerably 
across seasons, with a peak close to 700𝑘𝑊 during the 
winter to a peak of almost double in May with 
approximately 1300𝑘𝑊.  

As described in Section 2.1, this work uses historical 
marginal emissions factors from CAISO to forecast 
future grid emissions. We set the 𝑝𝐶𝑂2

, to equal a social 

cost of carbon of  $180 per 𝑡𝐶𝑂2 [21]. Fig. 3 (right) 
depicts the average marginal emissions. Notice how in 
the winter and beginning of Spring, when fewer 
renewable resources are available, the marginal 
emissions factors are considerably higher with values 
between 0.2 and 0.5 𝑘𝑔 ⋅ 𝐶𝑂2/𝑘𝑊ℎ. In May, there are 
daylight hours when the marginal emissions factors 
average is lower than 0.05 𝑘𝑔 ⋅ 𝐶𝑂2/𝑘𝑊ℎ.  

 
Fig. 3.  For January, March, and May 2023, daily average 

generation profile for the PV solar array at Stanford’s bus 
depot (left) and CAISO marginal emissions factors (right) 
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The price of electricity, particularly demand 
charges, is a key element when determining cost-
minimizing operations. Stanford uses the PG&E E-20 
Transmission Firm tariff (see Table 2), which is divided 
into energy charges, the price of energy consumed 
every 15 minutes ($/𝑘𝑊ℎ), and 𝑛𝑑𝑒𝑚𝑎𝑛𝑑 𝑐ℎ𝑎𝑟𝑔𝑒 = 3 

demand charges, determined by the largest power peak 
in 15 minutes during specified periods of the monthly 
billing period ($/𝑘𝑊). In this study, some scenarios 
include a storage system to be installed at the Stanford 
bus depot. It has a capacity of 𝐸𝑏𝑎𝑡𝑡 = 752𝑘𝑊ℎ, a 

maximum charge/discharge rate of 𝑃
𝑏𝑎𝑡𝑡

= 300 𝑘𝑊 

efficiency of η𝑏𝑎𝑡𝑡 = 0.95, and 𝑆𝑜𝐶𝑚𝑖𝑛
𝑏𝑎𝑡𝑡 = 0.2.  

 
Energy Charges 

Rate Period ($/𝒌𝑾𝒉) 

Peak Summer 12:00pm-6:00 pm 0.12337 

Part-Peak Summer 8:30am-6:00pm and 6pm-9:30pm 0.12337 

Off-Peak Summer* 9:30pm-8:30am 0.1177 

Part-Peak Winter 8:30am-9:30pm 0.11527 

Off-Peak Winter* 9:30pm-8:30am 0.11461 

Demand Charges 
Rate Period ($/𝒌𝑾) 

Peak Summer 12:00pm-6:00 pm 17.26 

Part-Peak Summer 8:30am-6:00pm and 6pm-9:30pm 17.26 

Maximum Summer* all time 19.68 

Maximum Winter* all time 19.68 

Table 2: PG&E E-20 Transmission Firm. Winter and Summer 
rates are effective in November-April and May-October, 
respectively. Rates are in effect during the period times listed 
for Monday-Friday, excluding holidays. *“Off-peak” and 
“Maximum” include Saturdays, Sundays, and holidays. 

4. RESULTS 
In this section, we analyze the results obtained from 

the digital twin platform for the case study described in 
Section 3 and compare these with a baseline of historic 
status-quo operations. First, we evaluate outcomes for 
a week of optimized operations with full PV solar 
capacity and battery storage system when using perfect 
forecasts. Second, we vary the solar capacity and assess 
the impact of including the storage system. Third, we 
evaluate the seasonal variance of the platform's 
performance. Fourth, we assess the impacts of 
uncertainty in solar generation and grid emissions by 
integrating simple forecast models and comparing them 
with achieved results from perfect forecasts. 

All optimizations had a seven-day horizon starting 
at 3 am with Δ𝑡 = 0.25 hours. Using model predictive 
control, the optimization is run at an alternating 
frequency of three and four days with two 
optimizations per week, with the first commencing on 
Sunday and the second on Wednesday. We saved 
results from the first three days (Sunday-Wednesday) of 
the first optimization of each week, then used the 𝑆𝑜𝐶 
of the buses and battery storage at Wednesday 3 am to 

initialize the second optimization, from which we save 
the first four days of results (Wednesday-Saturday) to 
produce a full week of results. 

We simulated eight scenarios: three baseline 
scenarios that evaluate system performance based on 
historic bus charging and solar generation data 
collected from meters at the bus depot and five 
optimized scenarios produced by the platform. The 
scenarios are notated in this format: AAA-G+SX+B. AAA 
can be either OPT or BAS, which denote an optimization 
or baseline scenario, respectively. The combinations of 
G+S+B indicate the sources of power available to supply 
the system: the grid (G), the PV solar array (S), and the 
stationary battery storage (B). X can be 100 or 50, 
referring to the percentage of solar capacity for the 
solar array relative to the actual capacity. 

The platform's optimization was solved using 
Gurobi 10.0.1 with stopping criteria of an absolute 
objective value gap of $50 and a maximum time limit of 
7 hours, except for cases that did not find a solution, 
which were re-run with a 10-hour limit. For the main 
OPT-G+S+B scenario for the week of March 12, the 
problem had 80559 continuous decision variables and 
57534 binary variables. It was solved in 51.8 minutes on 
a compute instance with 32 vCPU and 100GB RAM. 

4.1 Main Scenario: OPT-G+S+B in March 

From the bus data provided by Stanford University, 
we chose to evaluate the second full week of January, 
March, and May 2023 to assess seasonal variation 
across weeks during the academic quarter. We first 
focus on the results for March, which has solar 
generation levels in between those of January and May, 
and compare the baseline scenario BAS-G+S, which 
represents the actual scenario at Stanford University, 
with the optimized scenario OPT-G+S+B, a simulation of 
platform operations that also includes a battery storage 
system. We first assume perfect forecasts (i.e., no 
uncertainty in solar generation and grid emissions) to 
assess the lower bound on total net cost. 

As both baseline and optimized scenarios serve the 
same routes, they have similar total bus charger energy 
consumption, 21791 kWh and 19683 kWh, respectively. 
The small variation is due to differences in bus size 
assignments, the accuracy of the surrogate model for 
bus energy consumption, unknown deviations from the 
nominal bus schedule and starting/ending 𝑆𝑜𝐶 of buses 
in the baseline, and losses from charging/discharging 
the battery storage in the optimized scenario. 
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Fig. 4 shows a breakdown of the power supplies and 
demands in the baseline and optimized scenarios. For 
the baseline scenario, bus drivers simply charge the 
buses whenever they return to the depot, so there are 
demand concentrations in the evening when there is no 
solar generation and power must be drawn from the 
grid. In comparison, the optimized scenario shifts most 
of the charging to midday, increasing usage of carbon-
free solar power and reducing grid demand. 
Additionally, charging occurs mostly on weekdays in the 
baseline in contrast to all days of the week when 
optimized. Fig. 4 also highlights how battery storage is 
utilized to reduce emissions. The battery charges only 
during midday when there is carbon-free solar 
generation and discharges power to the bus chargers in 
the evening to recharge the few buses that are in 
service from morning to evening and cannot charge 
when solar generation is available. 

Fig. 5 shows the resulting grid power profiles for the 
two scenarios. Notably, the baseline scenario has grid 
demand in the evenings, when marginal emissions are 
highest (see Fig. 3). In contrast, the optimized scenario 
has nearly zero grid demand, except for a 6kW power 
draw on Saturday that occurs at a time when the 
emissions factor is 0 𝑘𝑔 ⋅ 𝐶𝑂2/𝑘𝑊ℎ. As a result, the 
optimized scenario achieves 24/7 carbon-free 
operations and reduces emissions by 100% (6.36 𝑡𝐶𝑂2), 
peak demand by 99% (574 𝑘𝑊), and total net cost by 
$3923. In the baseline scenario, the non-optimal solar 
utilization leads to more surplus power injected back 
into the grid (i.e., other university facilities), which is 
accounted for as increased revenue. However, this is 
offset by increased energy charges due to more use of 

grid power. Thus, the sum of revenue and energy 
charges between the baseline and optimized scenarios 
is similar (-$3576 and -$3755, respectively), which is 
expected as the charger energy consumption is similar 
and time-of-use energy rates do not vary significantly 
over the day. In summary, total net cost reductions are 
driven by demand charge and emissions cost 
reductions, not by energy charge and revenue. 

4.2 Varying solar and battery assumptions 

In this subsection, we evaluate cases in which the 
bus depot solar capacity is 0.9 𝑀𝑊, half of its present 
capacity, and in which the battery storage system is 
excluded. Fig. 6 compares grid power profiles for BAS-
G+S50, OPT-G+S50, and OPT-G+S50+B with emissions 
factors overlaid. Similar to the baseline scenario in 
Section 4.1, BAS-G+S50 has high grid consumption in 
the evening that coincides with high grid emissions. In 
contrast, when OPT-G+S50 draws grid power, it is 
typically when emissions are at a local minimum. Similar 
to the optimized scenario in Section 4.1, the OPT-
G+S50+B case leverages the battery storage in evenings 
to recharge those buses that operate from morning to 
evening, and its remaining grid consumption is limited 
to midday on days when emissions factors are 0 
𝑘𝑔. 𝐶𝑂2/𝑘𝑊ℎ, allowing this scenario to achieve 24/7 
carbon-free operations. 

 
Fig. 5. Grid power in the week of March 12-19 for the OPT-

G+S+B case (blue) and the BAS-G+S (orange). 

 
Fig. 4. Breakdown of power demand (bus chargers and 

battery charging) and power supply (grid, solar, and battery 
discharging) for the BAS-G+S (top) and OPT-G+S+B  (bottom) 

scenarios. 

 
Fig. 6. Power drawn from grid for BAS-G+S50, OPT-G+S50, 

and OPT-G+S50+B scenarios overlaid with emissions factors 
for the week of March 12-19. The optimized cases draw grid 

power at times with lower or no emisissions. 
 
. 
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Week Scenario 
Energy 
Charge  

($) 

Demand 
Charge  

($) 

Revenue  
($) 

Emission 
Cost  
($) 

Emissions 
(ton) 

Power 
Peak  
(kW) 

Total 
Net 
Cost 
($) 

Jan  
8-14 

OPT-G+S+B 569 244 0 286 1.59 54 1099 

OPT-G+S 623 483 8 288 1.6 107 1386 

OPT-G+S50+B 1635 494 0 891 4.95 109 3020 

OPT-G+S50 1636 530 1 860 4.78 117 3025 

OPT-G 2618 748 0 1436 7.98 165 4802 

BAS-G+S 1854 3315 1270 1102 6.12 732 5001 

BAS-G+S50 2034 3315 476 1201 6.67 732 6074 

BAS-G 2532 3315 0 1431 7.95 732 7278 

Mar 
12-18  

OPT-G+S+B 412 26 4167 0 0.00 6 -3729 

OPT-G+S 400 241 4222 14 0.08 53 -3567 

OPT-G+S50+B 483 199 1100 0 0.00 44 -418 

OPT-G+S50 465 241 1070 22 0.12 53 -342 

BAS-G+S 1381 2625 4957 1145 6.36 580 194 

BAS-G+S50 1471 2625 2005 1201 6.67 580 3292 

OPT-G 2433 966 0 1121 6.23 213 4520 

BAS-G 2508 2642 0 1535 8.53 584 6685 

May 
14-20  

OPT-G+S+B 186 36 8369 0 0.00 8 -8147 

OPT-G+S 279 241 8394 0 0.00 53 -7874 

OPT-G+S50+B 251 67 3211 0 0.00 15 -2893 

OPT-G+S50 284 241 3192 2 0.01 53 -2665 

BAS-G+S 1407 5547 9230 754 4.19 653 -1522 

BAS-G+S50 1515 5674 4125 815 4.53 668 3879 

OPT-G 2701 1606 0 729 4.05 308 5036 

BAS-G 2603 7924 0 1093 6.07 688 11620 

Table 3: Results for all scenarios using perfect forecast. 
Observe that the Total Net Cost is the sum of the Energy 
Charge, Demand Charge, and Emissions Cost minus the 
Revenue (which refers to energy costs that can be offset by 
power injected back to the grid). 

4.3 Comparison of seasonal performance 

As solar generation, marginal grid emissions factors, 
bus energy consumption, and electric utility rates vary 
by time of year, we performed case studies for fleet 
operations in January, March, and May to evaluate the 
24/7 CFEF platform's performance across seasons. Table 
3 reflects the results obtained for the second full week 
of January, March, and May, assuming a perfect 
forecast and ordered from lowest to highest total net 
cost. Figs. 7 and 8 show emissions and cost reductions, 
respectively, for each optimization scenario and its 
corresponding baseline. Taking advantage of the greater 
solar generation in March and May allows the platform 
to further reduce emissions reductions compared to the 
baseline. Integrating a stationary battery enables a 24/7 
decarbonized system in March, even with only 
moderate solar generation. In January, however, when 
solar generation is low, the case with the battery has 
slightly increased emissions. This occurs because the 
optimization is minimizing the total net cost, so the 
battery dispatch prioritizes decreasing demand charges, 
the most significant cost term, over emissions 
reduction. When solar generation is abundant in May, a 
24/7 decarbonized system is possible with and without 
the battery. However, integrating the battery further 
reduces total net cost. 

4.4 Dealing with uncertainty 

We conclude our analysis by assessing the 
platform’s performance under uncertainty of marginal 
grid emissions factors and solar generation compared to 
its lower bound results obtained with perfect forecasts. 
Fig. 9 presents the accuracy of the surrogate model 

(top) and performance of simple forecasters (bottom) 
described in Section 2. Recall that for the surrogate 
model, the prior 30 days were used as training data 
while the next seven days' features and energy 
consumption were used to validate the model. The 
model has an 𝑅2 value between 0.84 and 0.94 and 𝑀𝑆𝐸 
lower than 0.004. For the forecasts, the solar and 
weather forecast errors were larger for January and 
March due to cloudy and rainy days. Performance 
improved in May with more consistent weather (i.e., 
constant sun).  

Given the performance of solar generation 
forecasts, we investigated how adding a buffer to the 
solar forecast could improve overall results. In general, 
when the solar forecast underpredicts, the chargers and 
battery use surplus solar generation if they have unmet 
demand, and any remaining surplus is injected into the 
grid. When the forecast overpredicts, solar generation is 
distributed to the chargers and battery, and the grid 
fulfils the remaining demand. The buffer serves to 
reduce instances of overprediction, which often leads to 
expensive demand charges and carbon-emitting grid 
usage. The results of the platform when using buffered 
solar forecasts, which reduces the forecasted solar by a 

 
Fig. 8. Comparison of electricity bill between each 

optimization scenario and their corresponding baseline.  
 
 

 
Fig. 7. Comparison of emissions between each optimization 

scenario and their corresponding baseline.  
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constant factor, are shown in Table 4. We assess three 
uncertainty cases, OPT-G+S+B-forecast-S100, OPT-
G+S+B-forecast-S80, and OPT-G+S+B-forecast-S50, 
wherein the weather and emissions forecasts are 
unchanged, and the solar forecast is multiplied by 
100%, 80%, and 50%, respectively. We then evaluate 
the optimized actions using the actual solar and 
emissions profiles. In all the cases, optimization 
scenarios with uncertainty still outperform the baseline 
in total net cost and emissions. Among the uncertainty 
cases, the most conservative buffer (OPT-G+S+B-
forecast-S50) reduces the electricity bill relative to the 
baseline the most due to lower demand charges.  

While the optimization platform shows significant 
cost and emissions reductions compared to the baseline 
even when using naive forecasts, numerous strategies 
could be employed to improve its performance under 
uncertainty and close the gap with the lower bound of 
perfect forecast. Besides the buffer approach, other 
methods include (i) more frequent evaluations (e.g., 
daily) of the platform to have more updated forecasts, 
(ii) employing stochastic optimization in the platform's 
optimization module, (iii) incorporating more 
sophisticated forecast models such as attention-based 
mechanisms coupled with other covariates like weather 
features, and (iv) introducing a real-time controller for 
the stationary battery that will discharge the battery in 
response to demand spikes. 

5. CONCLUSIONS 
In this work, we developed a digital twin framework 

to coordinate electric bus fleet charging and bus 
assignments. We accounted for stationary battery 
storage charging/discharging, PV solar generation, and 
marginal grid emissions. Results demonstrated that the 
proposed method reduced emissions by roughly 74% 
during a winter week and achieved 24/7 carbon-free 

operations during spring weeks with a perfect forecast. 
Total net cost was reduced by approximately $3901 in 
winter and at least $3923 in spring. Moreover, using 
simple naive forecast models for marginal emissions 
and solar generation, the platform reduced up to 43% 
of carbon emissions during a winter week, depending 
on the buffer strategy, and at least 63% during spring. 
Total net cost was reduced by up to $1773 in winter and 
at least $1504 in spring. 

This success in cost-effective emissions reduction 
opens several avenues for future work. An immediate 
next step is to optimize solar array and stationary 
battery sizing to achieve 24/7 carbon-free operations in 
all weeks of the year. Additionally, we will validate 
simulated results by deploying the digital twin platform 
in a pilot with the Stanford Marguerite Shuttle. Further, 
a sensitivity analysis of emissions concerning the price 
of carbon can advise carbon pricing policy for 24/7 
carbon-free transportation. Next, the methodologies 
discussed in Section 4.4 can be investigated to improve 
the platform's robustness to uncertainty. Finally, we can 
employ the digital twin framework to enable 24/7 
carbon-free operations in other applications, such as 
electric fleets used by school districts, public 
transportation, corporate campuses, delivery services, 
autonomous shuttles, airports, and municipalities. 
 

Week Scenario 
Electricity 

Bill ($) 
(%) 

Emissions 
(ton) 

(%) 
Total Net 
Cost ($) 

(%) 

Jan 
8-14  

BAS-G+S 3899 - 6.12 - 5001 - 

OPT-G+S+B 813 -79 1.59 -74 1100 -78 

OPT-G+S+B-forecast-S100 3301 -15 3.48 -43 3927 -21 

OPT-G+S+B-forecast-S80 3122 -20 3.93 -36 3829 -23 

OPT-G+S+B-forecast-S50 2258 -42 5.39 -12 3228 -35 

Mar  
12-18 

BAS-G+S -951 - 6.36 - 193 - 

OPT-G+S+B -3730 -292 0.00 -100 -3730 -2031 

OPT-G+S+B-forecast-S100 -393 59 0.61 -90 -283 -246 

OPT-G+S+B-forecast-S80 -701 26 1.19 -81 -488 -353 

OPT-G+S+B-forecast-S50 -1735 -82 2.36 -63 -1311 -779 

May  
14-20 

BAS-G+S -2276 - 4.19 - -1522 - 

OPT-G+S+B -8146 -258 0.00 -100 -8146 -435 

OPT-G+S+B-forecast-S100 -7727 -239 0.29 -93 -7675 -404 

OPT-G+S+B-forecast-S80 -7481 -229 0.19 -96 -7448 -389 

OPT-G+S+B-forecast-S50 -8140 -258 0.15 -96 -8113 -433 

Table 4: Results for BAS-G+S and OPT-G+S+B compared to 
scenarios with uncertainty with varying buffer levels in solar 
generation forecast. Absolute and relative results for the 
electricity bill, emissions, and total net cost are shown. 
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Fig. 9. Surrogate model evaluation for test samples based 

on the 𝑅2 and 𝑀𝑆𝐸 metrics for each optimization (top) and 
WMAPE values for solar, emissions, and weather forecasts 
(bottom). The bars show the average WMAPE of the seven-
day forecasts beginning on the indicated date, and the error 

bars show the standard deviation. 
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