
Evaluation of Explainable Deep Learning Models in Predicting Hydrogen 
Production 

 
 

Chiagoziem C. Ukwuoma 1,2, Dongsheng Cai 1,2*, Chibueze D. Ukwuoma 3, Favour AB Ekong 4, Emmanuel S.A Gyarteng 5, Chidera O. 
Ukwuoma 6, Qi Huang 1,2 

1 College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Sichuan P.R., 610059, China 

2 Sichuan Engineering Technology Research Center for Industrial Internet Intelligent Monitoring and Application, Chengdu University 
of Technology, Sichuan P.R., 610059, China 

3 Department of Physics, School of Engineering and Engineering Technology, Federal University of Technology Owerri, Nigeria 

4 School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 

5 School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 

6 Department of Prosthetics and Orthotics Technology, Federal University of Technology Owerri, Nigeria 
(*Corresponding Author: caidongsheng@cdut.edu.cn) 

 
 

 ABSTRACT 
 To meet the difficulties of the current energy 
environment, hydrogen has enormous potential as a 
clean and sustainable energy source. Utilizing hydrogen's 
potential requires accurate hydrogen production 
prediction. Due to its capacity to identify intricate 
patterns in data, Machine learning alongside deep 
learning models has attracted considerable interest from 
a variety of industries, including the energy industry. 
These algorithms are inherently black boxes, which 
makes it difficult to comprehend and interpret their 
predictions, particularly in important sectors like 
hydrogen generation. First, this study conducted an 
extensive experiment using 4 machine learning 
regression models and a novel deep learning model 
based on Keras API for hydrogen production prediction 
based on the co-gasification of biomass and plastics 
datasets. Secondly, this study investigates the 
application of explainable AI models including Shapley 
Additive Explanation (SHAP), Local Interpretable Model-
Agnostic Explanations (LIME), and Explain Like I’m Five 
(ELi5) in predicting hydrogen production. We explore the 
significance of these models in providing insights into the 
underlying mechanisms and factors influencing 
hydrogen production processes hence improving our 
understanding of the relationships between input factors 
and hydrogen production outputs. This will allow for 

better-informed decision-making and process 
optimization in the energy industry. Our results 
demonstrate the interpretability and transparency of 
these models, highlighting their potential to raise the 
accuracy and dependability of forecasts of hydrogen 
generation. These models provide a useful resource for 
stakeholders to make informed decisions and enhance 
the use of hydrogen as a sustainable energy source by 
bridging the gap between predicted accuracy and 
interpretability. 

Keywords: machine learning, deep learning, explainable 
artificial intelligence, predicting hydrogen production, 
co-gasification 
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Abbreviations  

HDPE High-Density Polyethylene 
RSS Rubber Seed Shell 
RFR Random Forest Regressor 
XGBoost Extreme Gradient Boosting 
SVR Support Vector Regressor 
KNN K-Nearest Neighbor  
RS Renewable Sources 
CO2 Carbon Dioxide 
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CH4 Methane 
H2 Hydrogen Gas 
Ni/CaFe2O4 Nickel/Calcium Ferrite 
RBF Radial Basis Function 
MLP Multi-Layer Perceptron 
ANN Artificial Neural Network 
SEE Standard Error of Estimates 
CNN Convolutional Neural Networks 
GA Genetic Algorithms 
DT Decision Trees 
MAE Mean Absolute Error 
MSE Mean Square Error 
RMSE Root Mean Squared Error 
RMSLE Root Mean Squared Log Error 
R2 R-squared 
AI Artificial Intelligence 
XAI Explainable AI 
SHAP Shapley Additive Explanation 

LIME 
Local Interpretable Model-Agnostic 
Explanations 

Eli5 Explain Like I’m Five 

Symbols  

$ Dollar 
£ Pound 
mm Millimeter 
C Centigrade 
vol % Percentage in Volume 
wt % Weight in Volume 
kg Kilogram 

1. INTRODUCTION 
Conversations regarding the pursuit of 

environmentally friendly, cost-effective, and enduring 
energy resources have gained prominence due to the 
escalating global energy requirements[1][2]. Anticipating 
a global population of 10 billion by 2050, experts predict 
a substantial surge in energy consumption, accentuating 
the need for sustainable solutions. While fossil fuels have 
driven economic development globally, their ecological 
toll is evident. Consequently, researchers and scientists 
are exploring alternative energy production methods 
with minimal or no adverse environmental 
consequences[3–6]. As mentioned earlier, substances 
containing hydrogen, such as carbohydrates or water, 
are transformed into hydrogen gas. It's worth noting that 
around 96% of the world's hydrogen production is 
traditionally derived from fossil fuels. Specifically, 30% 
comes from naphtha reforming, 48% from natural gas 
steam reforming, and 18% from coal gasification[7]. 
However, these conventional hydrogen production 

methods are linked to the environmental issues currently 
plaguing the planet. As a result, environmentalists and 
the energy sector are actively striving to develop more 
eco-friendly approaches to generate hydrogen RS. 

While simultaneously transforming carbon into 
sustainable energy sources such as hydrogen and syngas, 
the utilization of plastics and biowastes can reduce the 
environmental impact of industrial processes found in 
sectors like iron steel, and cement[8][9]. The co-
gasification of plastic and biomass mixtures through dry 
and steam reforming of CO2 generates H2, with factors 
like feed composition and catalyst type influencing the 
conversion of waste plastics into fuel products[10][11]. 
Variables such as temperature, the ratio of polymers to 
biomass, CO2/CH4 ratios, and the choice of catalyst all 
play a role in the production of H2[9][12][1]. Waste 
polymers like polyethylene and polypropylene exhibit 
low moisture and ash contents but high volatile content, 
viscosity, and heating value. Among these materials, 
polypropylene stands out as the most effective for 
producing hydrogen. However, in comparison to 
biomass, which contains substantial quantities of 
hydrogen-rich molecules such as cellulose, 
hemicellulose, and lignin, polymers demand more 
energy for gasification and yield less hydrogen[13][14]. 
While the fossil fuel and renewable energy sectors have 
been vying for control over the production of green 
hydrogen crucial for the energy transition, there's now a 
third contender in the mix. Green hydrogen derived from 
organic waste has emerged as a significantly more cost-
effective alternative to both fossil fuels and renewable 
energy sources, offering a carbon-negative solution. This 
type of green hydrogen, produced from various 
combinations of organic waste, has the potential to 
power mobile homes and remote hospitals lacking 
access to electricity. In contrast, the electrochemical 
method used to produce green hydrogen, which requires 
substantial amounts of freshwater and renewable 
energy, is both environmentally friendly and efficient in 
separating water into hydrogen and oxygen. The cost of 
producing green hydrogen from waste blends is 
approximately $3 per kilogram, whereas utilizing solar or 
wind energy can cost roughly $11 to $16 per kilogram. 
Moreover, each tonne of dry waste can yield between 40 
and 50 kg of green hydrogen, though this amount may 
vary between 30 kg and 120 kg depending on the 
moisture content in the waste blends. 

Artificial intelligence techniques, which include 
machine learning and deep learning algorithms, can be 
employed for clustering, optimization, prediction, and 
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classification, tasks in the green hydrogen generation 
process. These AI methods analyze various data 
streams[14]. For example, in Scotland, a real-time 
machine learning system is being utilized to enhance the 
production of green hydrogen using wind and tidal 
power[13]. To ensure the security and reliability of the 
system and make informed data-driven decisions, a 
cloud-based hydrogen management platform has been 
developed, incorporating machine learning and 
optimization algorithms. This platform helps determine 
the most cost-effective times for hydrogen production 
and storage and has received £494,000 in support from 
the Department of Business, Energy, and Industrial 
Strategy. Consequently, the competence and trust of 
decision-makers in the application of machine learning 
models within specific domains are paramount[15]. 
Improving decision-making relies on the ability to detect 
flaws and concealed biases in these models' 
operations[16]. However, the intricate nature of 
machine learning models poses challenges for domain 
experts in comprehending their intricate structures. This 
underscores the necessity for tools that address the 
current demand and provide precise and 
comprehensible insights. Therefore, AI must emulate 
human judgment and interpretive abilities to gain 
acceptance and credibility[17][18]. Explainable AI (XAI), 
often referred to as "black-box models," strives to 
elucidate the decision-making process by seeking to 
understand the internal workings of these AI models, 
which are challenging due to their inherent complexity 
and opacity[19]. This has led to a significant increase in 
the adoption of post hoc approaches designed to render 
complex models understandable to humans. 

 

Motivation: The intricate nature of cutting-edge machine 
learning algorithms poses significant challenges in the 
field of Hydrogen production prediction. Emphasizing 
the critical importance of accurate and reliable Hydrogen 
production prediction models cannot be overstated, as 
they play a pivotal role in enabling well-informed 
decisions. Nevertheless, as AI models become more 
complex, transparency often diminishes, making it 
increasingly challenging to comprehend the rationale 
behind specific predictions and any potential associated 
shortcomings[18]. Conventional black-box machine 
learning algorithms cannot typically elucidate their 
predictions, creating a trust and acceptance hurdle for 
end-users and regulatory bodies[20]. In response to 
these pressing issues, researchers have diligently worked 
on developing Explainable AI (XAI) solutions (Fig. 1). 
These approaches offer coherent explanations for the 
outcomes generated by AI models, serving as guiding 
lights of understanding within their inherent opacity. 

The goal of the study is to make useful resources for 
stakeholders to make informed decisions and enhance 
the use of hydrogen as a sustainable energy source by 
bridging the gap between predicted accuracy and 
interpretability. The following are the main objectives of 
this study; 
❖ Use SHAP, LIME, and Eli5 to evaluate the 

transparency and explainability of machine learning 
models. 

❖ Showcase the ability of explainable machine learning 
to produce an explicit understanding of how models 
create predictions, intending to boost acceptance 
and trust in cutting-edge ML methods in hydrogen 
production prediction and the Energy sector. 

❖ Evaluate and contrast the benefits and drawbacks of 
LIME, ELi5, and SHAP in providing clear explanations 
of hydrogen production prediction. 

❖ Add to the corpus of current knowledge by 
emphasizing the practical consequences 

This paper is divided into the following sections; 
The second section contains the related studies. The 
third section details the comprehensive working 
processes and our proposed model. The experimental 
results, discussion, and future works are presented in 
section 4 while our conclusion is found in 5. 

2. RELATED WORKS  
The scientific research on the topic of predicting 

hydrogen generation has only produced a few numbers 
of answers. The research community has undergone 
some thorough studies of the problems relating to 
hydrogen generation[20–22]. Additionally, several 

 
Fig. 1 Principles of explainable AI 
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techniques and fixes for creating green hydrogen that 
utilize biological, chemical, or physical processes have 
been suggested. For example, Nicolas et al's[23] 
investigation on the potential for creating green 
hydrogen via bioethanol using nanocatalyst design. To 
create green hydrogen from seawater, Rafaeld'Amore-
Domenech et al[24] used and contrasted four electrolysis 
techniques. Few works focus on the aspect of predicting 
hydrogen generation. In Islamabad, Haider et al[25] 
looked into a machine-learning algorithm to forecast 
hydrogen generation from solar energy. One of the green 
technology tools, AI may help produce green hydrogen 
using a variety of methods and resources. Methane 
drying and reforming is one of the popular techniques 
that uses machine and deep learning models to forecast 
the generation of green hydrogen based on diverse 
catalysts. The Bayesian regularization algorithm, the 
Leven-Marquardt algorithm, and a scaled conjugate 
gradient algorithm were examined by Ayodele et al[26] 
for their suitability as training algorithms for an ANN 
prediction model to predict the quantity of CO and H2 
production by the methane drying and reforming 
technique. In comparison to the two used methods, the 
empirical findings demonstrated the overpowering 
advantage of the Bayesian regularization technique with 
the lowest SEE. The effectiveness of two ANN models to 
forecast the generation of hydrogen-rich syngas from the 
drying and reforming of methane over cutting-edge 
Ni/CaFe2O4 catalysts was examined by Hossain et al[27]. 
The results of the experiments from the methane drying 
and reforming cycle over innovative Ni/CaFe2O4 catalysts 
were trained and validated using RBF and MLP neural 
network models. The assessment findings demonstrated 
that, in predicting the generation of hydrogen-rich 
syngas from drying and reforming of methane over new 
Ni/CaFe2O4 catalysts, the ANN-MLP-based approach 
outperformed the ANN-RBF-based approach. 

To anticipate the overall hydrogen output resulting 
from thermo-catalytic methane reforming, May et al[28] 
investigated the performance of two deep learning 
models: one utilizing Bayesian regularization and 
another trained with the Levenberg-Marquardt method 
for a multilayer perceptron neural network. The 
experimental findings indicated that the Levenberg-
Marquardt-trained neural network, with a model 
architecture of 7-16-1, outperformed the Bayesian 
regularization-trained network in predicting the green 
hydrogen production rate. This was demonstrated by a 
coefficient of determination (R2) of 0.953 and a MSE of 
0.03. Additional ANN models were employed, assessed, 

and compared to forecast green hydrogen 
production[29]. Alternatively, an alternative approach 
involves generating green hydrogen through oxygen 
injection and hydrocarbon tanks submerged in water. 
Klemens et al[30] introduced a data-centric AI system in 
their work aimed at enhancing the production of green 
hydrogen within hydrocarbon reservoirs submerged in 
water. Their study marks a pioneering effort in the realm 
of improving oxygen injection techniques while 
simultaneously optimizing hydrogen generation through 
the utilization of an AI-based genetic optimization 
framework. Generating hydrogen from organic waste is 
regarded as one of the foremost and cost-effective 
methods[30–34]. Nonetheless, the existing body of 
literature does contain a limited number of AI models 
designed to strategize and enhance the production of 
green hydrogen from waste sources. More recent 
investigations[35][36] have focused on harnessing 
machine learning algorithms to maximize hydrogen 
generation from wastewater and sewage sludge. Five 
uses of machine learning methods for forecasting the 
treatment and recycling of organic solid waste were 
examined by Hao-nan et al[37]. Their research primarily 
focused on the use of ANN, SVM, GA, DT and RF for 
forecasting organic solid waste treatment. Their analysis 
was based on examining published papers from 2003 to 
2020. It's important to note that the study did not 
address the application of these machine-learning 
methods for generating hydrogen from organic solid 
waste. This research holds significance due to the 
identified gap in knowledge within this particular 
domain. 

Accurate predictions often require testing a limited 
and unrepresentative sample from the initial dataset, 
which can lead to increased accuracy but often at the 
cost of model representativeness. These neural network 
models exhibit three notable flaws. First, different 
approaches vary in the type of input data used for 
predictions; experimental data-based hydrogen 
descriptors may not always contain all the necessary 
information to predict a specific attribute accurately. 
These descriptors are not easily transferable and tend to 
perform poorly when applied to another machine 
learning-based approach with a different test set, as each 
model possesses unique characteristics. Secondly, the 
limited availability of data poses a challenge to 
constructing models, as it confines the models to specific 
estimations of free hydrogen generation, omitting 
significant variations in aqueous or organic solvents. 
Lastly, most of these models do not provide explanations 
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for their statistical forecasts, reinforcing the "black-box" 
nature of machine learning-based predictions. Previous 
models, except for Low et al[38], which still employ 
quantum mechanics calculations, fail to elucidate the 
physical significance of each prediction[39]. 

3. MATERIALS AND METHODS 

3.1 Explainable Models 

The goal of XAI is to provide users with clear 
explanations. These explanations have a crucial use in 
assisting domain specialists in exposing biased biases 
concealed inside these black box models[40]. The 
relevance of features for machine learning predictions is 
determined in this work using XAI approaches including 
SHAP, LIME and ELi5. These techniques modify a given 
data instance and track the impact on the black-box 
classifier's output to determine the role of certain 
characteristics in a given prediction[41]. 

❖ LIME: LIME is a method created to use interpretable 
surrogate models to describe the behavior of any 
base estimator. By fitting local surrogate models, 
such as linear classifiers or decision trees, to explain 
individual predictions, it produces locally true 
explanations[42]. Instead of attempting to fit a 
global surrogate model, LIME concentrates on the 
local behavior of the model. This method enables a 
thorough analysis and comprehension of the 
behavior of the model, but the explanations might 
not be consistent with the overall behavior. 

❖ ELi5: Since ELI5 is based on LIME, it uses a 
straightforward method to interpret predictions. It 
accomplishes this by assessing the significance of 
various traits in a random forest[43]. Following the 
decisions made in the tree structure allows for the 
determination of this importance. The influence of a 
feature is determined by how much the score shifts 
from a parent node to a child node at each point in 
the tree, where each point has a score. 

❖ SHAP: Game theory is used by SHAP to explain 
predictions made by machine learning[44]. The 
model's inputs are viewed as participants in a game, 
and the prediction result is the reward. SHAP 
measures how each input affects the forecast. By 
decomposing the impact of a model's attributes, 
SHAP, an explicable AI method, enables us to 
comprehend how a model decides[45]. For different 
kinds of models, such as decision trees and deep 
learning models, many techniques are used to 

estimate SHAP values, including kernel SHAP, 
Gradient SHAP, and TreeSHAP. 

3.2 Deployed Models 

Four regression machine learning models including 
the SVR, XGBoost Regressor, RFR, KNN Regressor and a 
novel ANN model based on Keras API were deployed in 
this study for hydrogen production prediction[46][47].  

❖ RFR: RFR is an estimation method that employs 
averaging to increase predicted accuracy and reduce 
overfitting after fitting many classification decision 
trees to different dataset subsamples. If bootstrap is 
set to default (i.e., True) the size of the sub-sample is 
determined by the max_samples argument; 
otherwise, each tree is constructed using the whole 
dataset. In this study, only the Nos. of estimators = 
30 and random state = 100 were set based on the 
Grid search analysis. Fig. 2 depicts the basic structure 
of the RL Algorithm. 

 

 

❖ XGBoost Regressor: This is a machine learning model 
used for supervised learning tasks, in which the 
training data is used to predict a target/response 
variable. It is used for regression (continuous 
response variable) and classification (qualitative 
response variable). In this study we used it for 

 
Fig. 2 Basic structure of the RF algorithm 

 
Fig. 3 XGBoost architecture 
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regression analysis i.e., to create a prediction for a 
quantitative response variable based on explanatory 
factors that can be quantitative and/or qualitative as 
shown in Fig 3. The optimal training parameter used 
in this study includes Base score = 0.5, learning rate 
= 0.200, nos. of estimators = 50, max depth = 12, 
gamma = 0.7, alpha = 0.7, random state = 42, and 
was based on the Grid search method. 

❖ SVR: Regression analysis is carried out using this 
particular kind of machine learning technique. 
Finding a function that minimizes the prediction 
error and roughly approximates the connection 
between the input variables and a continuous target 
variable is the aim of SVR. SVR looks for a hyperplane 
in a continuous space that best matches the data 
points. As seen in Fig. 4, this is accomplished by 
projecting the input variables into a high-
dimensional feature space and identifying the 
hyperplane that minimizes the distance (margin) 
between the hyperplane and the nearest data points 
while also reducing the prediction error. By applying 
a kernel function to translate the data to a higher-
dimensional space, SVR can manage connections 
that are not linear between the input variables and 
the target variable. The training parameters were set 
using the Grid search algorithm (Kernel = ’rbf’, 
random seed = 42). 

 

❖ K-NN Regressor: a supervised learning classifier that 
employs proximity to produce classifications or 
predictions about the grouping of a single data point. 
It can be applied to classification or regression issues. 
Here, the average of the k nearest neighbors is used 
to predict a classification (continuous values) 
because it is being used in a regression task as shown 
in Fig 5. During training, the Grid search algorithm 
was used to set the optimal hyperparameter (Nos. 
neighbors = 4) of the model. 

 

❖ Proposed Model Based on Keras API: The model is 
composed of interconnected nodes organized into 
layers. Information flows through these layers, 
starting with an input layer, passing through hidden 
layers, and concluding with an output layer as shown 
in Fig 6. The model's input layer comprises a [16, 3, 
1] architecture, 30 rows of data, and 4 independent 
variables. Given that the regression issue is intended 
to provide an exact prediction of numerical values, 
the output layer does not receive an activation 
function. The L2 regularization is used to avoid 
overfitting by encouraging weight decay toward 
zero. The model is constructed using the Adam 
optimizer, mean squared error loss, mean absolute 
error, and other measures. During training, a batch 
size of 2, 3000 epochs, and a verbose output setting 
of 1 are employed. 

 

3.3 Dataset 

The study's dataset was based on Chin et al.[48] 
research. In statistics, a sample size of 30 is typical. A 
population data set's confidence interval can be 
increased by a factor of 30 to support claims that the 
result is false[49].  

 
Fig. 4 Basic structure SVR algorithm 

 
Fig. 5 Basic structure KNN algorithm 

 
Fig. 6 Basic structure of an ANN model 
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Table 1. Description of the Hydrogen Production Data 

Temperature 

(C) 

RSS 

Particle 

Size (mm) 

HDPE 

Particle 

Size (mm) 

Percentage of 

Plastics in 

Mixture (wt%) 

H2 (vol 

%) 

800 0.25 0.25 10 46.676 

700 0.125 0.375 20 50.123 

600 0.5 0.25 30 47.751 

800 0.5 0.25 10 45.952 

500 0.375 0.375 20 44.781 

700 0.375 0.625 20 43.031 

600 0.5 0.25 10 45.324 

900 0.375 0.375 20 49.23 

800 0.5 0.5 30 44.355 

600 0.5 0.5 30 44.208 

700 0.375 0.375 0 44.466 

700 0.375 0.375 40 46.603 

700 0.625 0.375 20 43.072 

800 0.25 0.5 30 47.396 

700 0.375 0.375 20 39.98 

800 0.25 0.25 10 46.338 

700 0.375 0.375 20 38.569 

700 0.375 0.375 20 49.868 

800 0.25 0.25 30 46.545 

700 0.375 0.375 20 38.612 

600 0.5 0.5 10 41.032 

700 0.375 0.375 20 38.625 

600 0.25 0.5 30 47.123 

700 0.375 0.375 20 38.621 

600 0.25 0.25 10 48.634 

800 0.5 0.25 30 48.475 

600 0.25 0.5 10 48.132 

700 0.375 0.375 20 39.262 

600 0.25 0.25 30 46.502 

800 0.5 0.5 10 41.93 

The dataset consists of 30 experimental runs, with 
gasification temperature, rubber seed shell (RSS), and 
high-density polyethylene (HDPE) particle size, the 
volume of plastic in the mixture acting as independent 
variables, and the volume of hydrogen produced acting 
as the dependent variable (Table 1). A larger sample size, 
however, has a better likelihood of being representative 
of the population at hand. According to statisticians, a 
sample size of 30 is enough for the majority of 
distributions. 

3.4 Evaluation Metrics 

This paper made use 5 evaluation metrics namely 
the MAE, MSE, RMSE, RMSLE and R2. By dividing the total 
number of observations by the sum of all errors, the MAE 
determines the exact difference between the actual and 
anticipated values mathematically represented as 

  MAE =
1

n
∑ (Yi − Ŷi)

n
i=1          (1) 

where 𝑛  = number of samples, 𝑌𝑖 = observed values 

and �̂�𝑖= predicted values. The squared variation in the 

actual and anticipated value is known as the mean 
squared error mathematically represented as; 

  MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1         (2) 

The RMSE corresponds to the square root of the average 
squared error, and its measurement unit aligns with that 
of the dependent variable. 

 RMSE = √
1

n
∑ (Yi − Ŷi)

2n
i=1      (3) 

 RMSLE = √1

n
∑ (log(Yi + 1 ) − log(Ŷi + 1))

2
n
i=1   (4) 

R-squared (𝑅2) also known as the Coefficient of 
Determination or Fit Quality, measures how much better 
the performance of the regression line is than a simple 
mean line. It is dimensionless, analyzes model 
performance in every situation, and consistently 
produces numbers below one. it is mathematically 
represented below as; 

R2 = 1 −
sum squared regression (SSR)

total sum of squares (SST)
= 1 −  

∑(Yi−Ŷi)
2

∑(Yi−Y̅)2 (5) 

4. RESULTS AND ANALYSIS 

The descriptive statistics for the used dataset are 
displayed in Table 2. We used boxplots to show the data 
distribution, identify probable outliers, and determine 
the range of values in each of the indicated columns. The 
most crucial statistical information about a dataset, such 
as the median, quartiles, and any potential outliers, are 
concisely displayed in boxplots. Additionally, we 
displayed the intrinsic characteristics of the dataset's 
features using the boxplot as shown from Fig. 7 to Fig. 
10. 

 

 
Fig. 7 Temperature vs. H2 
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Table 2. Descriptive Statistics Hydrogen Production Data 

 
Temperature 

(C) 

RSS 
Particle 

Size 
(mm) 

HDPE 
Particle 

Size 
(mm) 

% of 
Plastics in 
Mixture 
(wt%) 

H2 (vol 
%) 

count 30.0000 30.0000 30.0000 30.0000 30.0000 

mean 0.7778 0.6000 0.6000 0.5000 44.7072 

std 0.1011 0.1819 0.1661 0.2274 3.6519 

min 0.555556 0.2000 0.4000 0.0000 38.5690 

25% 0.666667 0.4000 0.4000 0.2500 42.2053 

50% 0.777778 0.6000 0.6000 0.5000 45.6380 

75% 0.888889 0.8000 0.7500 0.7500 47.3278 

max 1.000000 1.0000 1.0000 1.0000 50.1230 

4.1 Results 

We give the findings from our analysis in this section. 
According to Table 3, RFR performs the best in terms of 
accuracy and error metrics since it has the lowest MAE, 
MSE, and RMSE of all the models. The fact that its R2 is so 
low, though, indicates that it doesn't adequately account 
for the data's variation. XGBoost performs worse than 
RFR due to larger errors (MAE, MSE, RMSE) and a very 
low R2. SVM has a negative R2, performing marginally 
worse than XGBoost in terms of error metrics, indicating 
that it does not well match the data. R2 and error metrics 
place KNN between RFR and XGBoost.  

Table 3. Results 
Model MAE MSE RMSE R2 MSLE RMSLE 

RF 2.516 8.946 2.991 0.285 0.004 0.066 

XGBoost 2.880 12.266 3.502 0.020 0.006 0.077 

SVM 3.361 12.809 3.579 -0.024 0..006 0.080 

KNN 3.266 11.564 3.401 0.076 0.006 0.075 

Proposed 
Model 

1.775 5.488 2.323 0.459 0.003 0.053 

 
In terms of MAE, MSE, RMSE, and R2, the Proposed 

Model performs better than any other model. It makes 
the most precise predictions and accounts for a 
significant proportion of the variation in the data since it 
has the lowest error values and greatest R2. 
Furthermore, it has the lowest MSLE and RMSLE, 
indicating that it effectively manages the large range and 
probable skewness of the data. Fig. 11 to Fig. 14 
illustrates the machine learning model prediction vs. 
actual result. The proposed model result is shown in 
Figure 15. 

 

 

 
Fig. 8 RSS Particle Size vs. H2 

 
Fig. 9 HDPE Particle Size vs. H2 

 
Fig. 10 % of Plastics in Mixture vs. H2 

 
Fig. 11 RFR prediction 
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4.2 Result Explanation Using Explainable AI Models 
A description that is simple and easy for a human to 

grasp for the judgments made by AI and machine 
learning models is referred to as explainable AI. The 
SHAP Interpreter, LIME Explainer, and Eli-5 were used in 
this investigation. 

4.2.1 SHAP 
By calculating the contribution of each attribute to 

the forecast, this technique seeks to explain the 
prediction of an instance or observation. We provided 
two reasons using the SHAP; variable significance and a 
defined goal. The variable relevance for the suggested 
model prediction is shown in Fig. 16. The characteristics 
are sorted in this plot according to their average SHAP 
values, with the most significant features appearing at 
the top and the least significant ones at the bottom. This 
makes it easier to comprehend how each attribute 
affects the predictions made by the model. However, the 
first two parameters with the highest predictive power 
are HDPE particle size and RSS particle size. % of plastics 
in the mixture, however, do not contribute as much as 
the first three characteristics. A more detailed 
breakdown of the effect of each attribute on a particular 
result is shown in Figs. 17 to 21.  The characteristics are 
shown on the Y-axis in order of their average absolute 
SHAP values. Values on the X-axis are SHAP values. 
Positive values for a particular characteristic move the 
prediction of the model closer to the label being looked 
at. Negative values, on the other hand, tend to favor the 
opposing class. those with red dots are more likely to 
contribute significantly to the hydrogen prediction 
(positive result), whereas those with blue dots do not. 

 

 
Fig. 12 XGBoost regressor prediction 

 
Fig. 13 SVR prediction 

 
Fig. 14 K-NN regressor prediction 

 
Fig. 15 Proposed model prediction 
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4.2.2 LIME 

LIME focuses on describing the model's prediction 
for specific occurrences rather than giving a broad 
knowledge of the model on the full dataset. The 
suggested model based on Keras API and the LIME 
explanation for the first instance in the test data are 
shown in Fig. 22 together with the final feature 
contribution in a tabular fashion. From left to right, the 
result includes three key pieces of information: (1) the 
model's predictions, (2) the contributions of the 
features, and (3) the actual value of each feature. From 
Fig 22, the proposed model's predicted value for 
hydrogen production is 39.12. The variables RSS Particle 
size, Temperature and Percentage of the mixture have a 
positive influence while HDPE Particle size has a negative 
influence on predicted hydrogen production. All the 
values are in thousands of dollars. The same explanation 
goes for other employed models.  

4.2.3 ELI5 
This paper tends to explain the result of the 

implemented Tree-based models we (RFR and XGBoost) 
as shown in Fig 23 to Fig. 26. The weights assigned to 
each characteristic as seen in Figs. 23 and 25, indicates 
the average influence of a characteristic on the 
predictions, while the sign indicates the direction of that 
impact. For the Random Forest regressor, we suspect 
that the Temperature will contribute highly to the 
production of hydrogen. However, Fig 24 says otherwise 

 
Fig. 16 Variable importance plot - global  

interpretation of the proposed model 
 

 
Fig. 17 RL prediction interpretation using SHAP 

 
Fig. 18 XGBoost prediction interpretation using SHAP 

 
Fig. 19 SVR prediction interpretation using SHAP 

 
Fig. 20 K-NN prediction interpretation using SHAP 

 
Fig. 21 Proposed model prediction interpretation using 

SHAP 
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as our model indicated that the prediction made by the 
random forest regressor was biased.  

 

 
Fig. 22 Proposed model prediction interpretation using LIM

 The result shows that the most important factor 
was that the prospect sees the combination of the 
features to be important ranking RSS Particle Size first 
followed by % of Plastic in the mixture, temperature, and 
lastly HDPE Particle size. For the XGBoost model as seen 
in Fig. 25. we suspect that the Temperature will 
contribute highly to the production of hydrogen. 
However, Fig 26 says otherwise as our model indicated 

that the prediction made by the XGBoost was biased. The 
result shows that the most important factor was that the 
prospect sees the combination of the features to be 
important in ranking HDPE Particle size. followed by 
temperature, % of Plastic in the mixture, and lastly RSS 
Particle Size. 

 
Fig. 23 RF weight and feature identification using  

ELI-5 
 

Fig. 24 RF prediction explanations using ELI-5 
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4.3 Discussions 
The majority of machine learning models are still 

black boxes despite their broad deployment. 
Understanding the rationale behind certain forecasts is 
crucial for determining one's level of trust, which is 
crucial if one intends to act on a prediction. At the 
moment, models are assessed using accuracy measures 
on a validating dataset. However, actual data is 
frequently vastly different, and the assessment score 
could not accurately reflect the objective of the product. 
In addition to such measurements, it is useful to examine 
specific forecasts and their justifications. In many 
businesses, machine learning models are utilized 
because biased data might result in judgments that have 
a significant negative effect. 

From the recorded results, RFR outperforms other 
models in terms of accuracy and error metrics, with the 
lowest MAE, MSE, and RMSE. XGBoost performs worse 
than RFR, with larger errors and a very low R2 score. SVM 
has a negative R2 score, indicating poor model fit. KNN 
falls between RFR and XGBoost in terms of error metrics 
and R2. The Proposed Model performs the best, with the 
lowest error values (MAE, MSE, RMSE) and the highest 
R2. It also effectively handles data range and skewness, 
as shown by low MSLE and RMSLE. Figures 11 to 14 
illustrate machine learning model predictions vs. actual 
results, with the Proposed Model's result shown in Figure 
15. SHAP values are used to assess variable significance. 
HDPE particle size and RSS particle size are the most 
significant features, while the percentage of plastics in 

the mixture has less influence. Figures 16 to 21 provide a 
detailed breakdown of the effect of each attribute on 
specific results. LIME is used to describe the model's 
prediction for specific instances. It shows feature 
contributions to a prediction. An example for the 
Proposed Model shows that HDPE Particle Size has a 
negative influence on predicted hydrogen production, 
while RSS Particle Size, Temperature, and Percentage of 
Mixture have positive influences. ELI5 is used for global 
interpretation and understanding of model parameters. 
The Tree-based models (Random Forest and XGBoost) 
are explained in Figs. 23 to 26, indicating the influence of 
features on predictions. Overall, the Proposed Model 
appears to be the best-performing model for the given 
task, with comprehensive explanations of feature 
importance and model predictions provided through 
various techniques, including SHAP, LIME, and ELI5. 

4.4 Limitations and Future Works 
This study identified a few data instances as a major 

drawback to ascertaining the evaluation of Machine 
learning predictions for hydrogen production. Thus, data 
augmentation will be looked into in our next study. 
Secondly, the proposed model-sensitive parameter 
analysis was not included in this study to show the 
various effects of different hyperparameters in the 
model predictions. For the explainable AI models, only 
one instance was used for illustration due to the limited 
number of pages required for this conference. 
Experimenting with various test instances will show 
more insights to the readers and research community. 

5. CONCLUSION 
This study aimed to predict hydrogen production in 

the context of co-gasification of biomass and plastics 
using machine learning and deep learning models while 
emphasizing interpretability through explainable AI 
methods. Among the machine learning models tested, 
RFR exhibited the best performance in terms of accuracy 
and error metrics. The Proposed Model based on Keras 
API outperformed all models, providing the most precise 
predictions and accounting for a significant proportion of 
data variation. Explainable AI techniques, such as SHAP, 
LIME, and ELI5, were employed to shed light on the 
black-box nature of machine learning models. SHAP 
values identified HDPE particle size and RSS particle size 
as the most significant factors influencing hydrogen 
production. LIME was used to provide detailed 
explanations for individual predictions, highlighting the 
impact of specific features on hydrogen production. For 
instance, HDPE Particle Size had a negative influence, 
while RSS Particle Size, Temperature, and Percentage of 

 
Fig. 25 XGBoost weight and feature identification 

using ELI-5 

 
Fig. 26 XGBoost prediction explanations using ELI-5 
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Mixture had positive influences. ELI5 was utilized for 
global interpretation, revealing the importance of 
different features in the Tree-based models (Random 
Forest and XGBoost). While this study has made 
significant progress in predicting hydrogen production 
and enhancing interpretability, there are several 
avenues for future research including Ensemble Models, 
Feature Engineering, Real-Time Predictions, Data 
Collection, Optimization Strategies, and Cost-Benefit 
Analysis: Evaluate the cost-effectiveness of 
implementing these predictive models and the potential 
impact on the energy industry 
 This study has demonstrated the potential of 
machine learning models and explainable AI techniques 
in predicting hydrogen production. Future research 
should aim to refine and expand upon these findings to 
contribute further to the sustainable energy sector and 
bridge the gap between accuracy and interpretability in 
predictive models. 
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