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ABSTRACT 

The surge in electric vehicle (EV) popularity 
necessitates innovative approaches for estimating the 
state of health (SOH) of EV lithium-ion batteries. This 
study introduces a transformer-based online SOH 
estimation model that leverages actual EV driving data, 
marking a departure from conventional methods that 
rely on lab-experimented battery cycle data. Our model 
comprises a transformer encoder and processes the raw 
sequences of battery voltage, current, state of charge, 
and vehicle speed. Despite the inherent noise in the EV 
battery readings while driving, the model shows high 
accuracy, with a mean absolute error of 1.31% and a root 
mean square error of 2.08%. Furthermore, this study 
unveils through self-attention map analysis that the 
model attends the stationary period of EVs to estimate 
the SOH. Although this study has a limitation in the 
dataset which lacks a wide range of driving route 
patterns, it still demonstrates the significant potential of 
transformer models in online SOH estimation for EVs 
while also providing valuable insights for future data 
collection. 
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NONMENCLATURE 

Abbreviations  

 EV Electric Vehicle 
 SOH State of Health 
 LIB Lithium-ion Battery 
 SOC State of Charge 
 MLP Multi-Layer Perceptron 
 MSE Mean Squared Error 
 MAE Mean Absolute Error 
 RMSE Root Mean Squared Error 

1. INTRODUCTION 
The electrification of transportation is a critical 

factor in achieving a decarbonized society, wherein 
electric vehicles (EVs) play a pivotal role. A crucial 
technological component for expanding EVs is a battery, 
which is essential for storing electricity to power the 
motor. Lithium-ion batteries (LiBs) are commonly 
employed in EVs due to their high energy and power 
density [1]. Despite these advantages, one challenge LiBs 
face is their degradation in power and capacity over time 
through usage. This degradation is critical, especially for 
EV applications, because it directly relates to its 
performance. 

The state of health (SOH) is an indicator for 
evaluating the degree of battery degradation. Knowing 
accurate SOH is essential from the perspectives of safety 
and performance, as well as second-life applications and 
recycling. However, accurately determining SOH poses a 
significant challenge because it cannot be directly 
measured and requires complex estimation techniques. 
In this study, we focus on the problem of online SOH 
estimation of EVs. Online SOH estimation is an SOH 
estimation that does not need to disrupt regular use, 
which is more suitable for EV applications. 

Various methods to estimate SOH online have been 
explored, such as Coulomb counting methods which 
integrate currents and open circuit voltage-based 
methods [2]. In addition, recent advances in machine 
learning techniques have led to the exploration of many 
data-driven approaches. The studies of SOH estimation 
techniques can be categorized into two clusters based on 
data types: lab-experimented and EV operational data-
based studies. In lab-experimented data-based studies, 
various methods are proposed [3,4], yet they fall short in 
real-world EV applications for two primary reasons. First, 
they rely on cell-level data to estimate SOH, but such 
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data is often inaccessible in EV application contexts. 
Second, these methods usually assume consistent 
charging and discharging conditions in a controlled lab 
setting, including cycle intervals, depth of discharge, and 
temperature. However, these factors significantly affect 
battery degradation and vary widely in real-world 
scenarios, making such assumptions impractical. 
Meanwhile, studies based on real-world EV operational 
data have shown significant progress [5,6], yet still face 
challenges such as unreliable reference SOH and limited 
applicability in various situations. 

This research introduces a transformer-based 
model [7] for EV online SOH estimation to tackle these 
challenges by leveraging complex, noisy, real-world 
driving data. This data is coupled with reliable reference 
SOH obtained from occasional full-discharge tests. While 
there are several definitions of SOH [8], this study 
focuses on energy capacity-based SOH, which is a critical 
factor directly related to the cruising range in EVs. In this 
case, SOH is defined as the ratio of current energy 
capacity in kWh to initial energy capacity in kWh. 

The proposed model incorporates a transformer 
encoder to process time series data of battery voltage, 
current, state of charge (SOC), and vehicle speed from 
individual trips, enhancing its applicability in various 
situations. The model's design obviates the necessity for 
feature engineering, streamlining the training and 
inference process. Additionally, the transformer 
architecture not only enhances the model's estimation 
performance but also aids in interpreting the estimation 
process, which is attributable to the self-attention 
mechanism. 

Our model is trained and evaluated using real-world 
EV driving test data amassed over about three years from 
three distinct EVs in Japan. The model's input data 
(battery voltage, current, SOC, and vehicle speed) is 
captured in real-time during driving. It should be noted 
that the dataset may not fully capture diverse real-world 

driving patterns because the EVs are repeatedly driven 
on the same route for set periods. 

Despite this limitation, our research offers valuable 
insights into model development and data acquisition, 
marking a significant advancement in online SOH 
estimation for LIBs based on EV-driving metrics. The 
contribution of this study is as follows: 
• We demonstrate the significant potential of using a 

transformer in EV online SOH estimation by 
developing a model that processes raw EV driving 
data from a single trip.  

• We train and evaluate our model using real-world 
EV driving data with reliable reference SOH 
collected over three years from three vehicles. 

• We investigate the nuances of data collection, 
which helps to further the SOH estimation studies 
using EV-driving data. 

2. METHODS 

2.1 Network architecture 

To accurately deduce the SOH from EV driving data, 
we develop a neural network architecture that 
incorporates the transformer encoder. The motivation 
behind leveraging the transformer encoder is its 
competency in recognizing the dependencies inherent 
within sequential data. A visual representation of the 
proposed model architecture can be found in Fig. 1. 

The network intakes time series data of battery 
voltage, current, SOC, and vehicle speed from a single 
trip and subsequently projects the estimated SOH. A 
single trip is defined as a period of time during which the 
vehicle is in continuous drive mode. For a comprehensive 
discussion regarding the nature, preprocessing, and 
source of input data, we refer the reader to Section 2.2. 

The data input is structured as a multi-channel 
sequence, represented by the shape (𝐶, 𝑁) . Here, 𝐶 
refers to the number of data channels with a value of 

 
Fig. 1 The network architecture of the transformer-based online SOH estimation model. 
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four (speed, voltage, current, and SOC), while 𝑁 
indicates the sequence's length. Initially, this input 
undergoes a transformation via a 1D convolutional layer, 
which maps it into a latent space. This process results in 
a tensor that has the dimensions of (𝑁!"#$%–1, 𝐷). A 
CLS token, a special tensor used to aggregate 
information about the entire sequence, is added at the 
beginning of the embedded sequence. The transformer 
encoder subsequently processes this modified sequence. 
The latent representation corresponding to the CLS 
token the encoder produces is then fed into a multi-layer 
perceptron (MLP) head, resulting in an estimated SOH. 

2.2 Dataset 

The dataset utilized in this research was generated 
by the Japan Automobile Research Institute, collecting 
data from August 2011 to June 2014, with missing data 
from September 2012 to March 2013. This dataset 
encompasses readings from three EVs with an initial 
capacity of 16 kWh. During data collection, each vehicle 
was assigned a fixed driving schedule, which comprised 
a unique combination of predetermined and varied 
driving routes. These routes included some long-distance 
highway routes and shorter-distance city routes. 

During EV driving, the speed, voltage, and current, 
which are used as inputs for the neural network model 
detailed in section 2.1, are recorded every second. In 
contrast, the SOC is logged every minute. This SOC data 
is then interpolated every second using linear 
interpolation. To exclude anomalous data, only records 
with trip lengths between 10 and 90 minutes, with a 
mileage of 10 km or more, and without measurement 
errors are used. The total number of trips after 
considering these conditions is 3,335. When inputting 
data into the model, only the first 45 minutes, or 2,700 
seconds of each trip, are used. This duration is chosen for 
the model as it effectively captures critical features 
necessary to estimate the SOH while reducing the 

model's size and computational demands. In the case 
that a trip is less than 45 minutes, padding is applied 
based on the length of the trip. The average mileage of 
the 3,335 trips is 33.9 km, and the average trip duration 
is 51.7 minutes. An illustration of the driving data from a 
single trip, utilized as input for the model, can be found 
in Fig. 2. 

During the data collection period, a constant-current 
discharge test with c-rate 0.3 was conducted roughly 
once every six months using a chassis dynamometer to 
evaluate the battery degradation. The SOH is calculated 
based on the discharge capacity obtained from the test. 
It is then linearly interpolated based on the odometer 
reading, which reflects the vehicle's accumulated 
mileage. This interpolated SOH is used as the reference 
SOH, serving as the target value for the SOH estimation. 

2.3 Model training 

For the model training process, we randomly split 
the dataset into training, validation, and test sets, with a 
ratio of 8:1:1. The model is trained using the training 
dataset, and its performance is assessed with the 
validation dataset at the end of each epoch. The best 
model, determined by the lowest validation loss, is then 
evaluated on the test dataset to assess its effectiveness. 

We employ the AdamW optimizer with a learning 
rate of 1e-4 and a batch size of 16. The loss function is 
the mean squared error (MSE) between the estimated 
SOH and the reference SOH. The model is trained for 400 
epochs. 

3. RESULTS AND DISCUSSION 

3.1 Training and evaluation results 

We evaluate the stability and performance of our 
model by training it using three different random seeds. 
Fig. 3 presents the loss curves for the training and 
validation datasets across these seeds. The plotted line 
for each dataset represents the mean loss, while the 
shaded region indicates the standard deviation. Learning 
curves are smoothed by applying a moving average with 

 
Fig. 2 The illustration of EV driving data of a 

single trip which the model takes as an input. 

 
Fig. 3 The loss curve for the training and validation 

dataset over three random seeds. 
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a window size of 11, and the vertical axis is truncated at 
0.004. The loss convergence is observed for both training 
and validation in Fig. 3, indicating a consistent learning 
process across different random seeds.  

In the evaluation with the test dataset across three 
random seeds, the average mean absolute error (MAE) 
was 1.31%, with the root mean square error (RMSE) 
measuring 2.08%. Among the three instances of the 
model, each trained with different random seeds, the 
best-performing instance yielded an MAE of 1.22% and 
an RMSE of 1.83%. 

Fig. 4 illustrates the SOH estimation result of the 
best-performing instance across various driving routes in 
the test dataset. The instance achieves high precision, 
with 97.3% of the SOH estimates falling within a 5% error 
margin, depicted by the gray area.  

3.2 Self-attention map analysis 

To elucidate the process through which the model 
estimates the SOH from the EV driving data, we examine 
the self-attention weights of the last layer assigned to 
the CLS token for different inputs. Fig. 5 shows examples 
of self-attention map visualization. These attention maps 
correspond to (a) highway driving input and (b) city 
driving input. The red heatmaps indicate the model's 
attention intensity. 

Irrespective of the type of driving, the self-attention 
map analysis demonstrates that the model tends to 
attend the data points where the vehicle speed is 
recorded as 0 or where the EV comes to a complete stop, 
especially towards the latter segments of the trip. This 
observation implies that the battery readings in 
stationary periods of the vehicle after driving emerge as 
crucial features for the model to estimate SOH. 

3.3 Limitation 

While the proposed method attains satisfactory 
accuracy, a noteworthy limitation of our study hinges on 

the limited and repeated driving route patterns in the 
dataset. The model might mistakenly correlate specific 
driving patterns to SOH due to the repetitiveness of the 
same driving route patterns. In particular, patterns 
associated with city driving routes 4 and 5, as seen in 
Figure 4, might be mistakenly correlated. Such 
unintended associations could prevent the model from 
accurately learning the relationship between EV driving 
data and SOH. 

4. CONCLUSION 
In this research, we address online SOH estimation 

from EV driving data. Our proposed transformer-based 
approach showcases the significant potential in EV online 
SOH estimation while achieving notable accuracy. The 
self-attention map analysis shows that the EVs’ battery 
readings in their stationary period are employed as clues 
by the model to estimate SOH. While the model 
demonstrates remarkable results, it should be noted that 
its performance might be influenced by the 
repetitiveness and limited diversity of driving patterns in 
the dataset. For enhanced model validity and improved 
estimation accuracy in future iterations, it is important to 
incorporate a more diverse range of driving patterns. 
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