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ABSTRACT 
This study pioneers a novel method to interpret urban 
energy consumption through human mobility patterns, 
utilizing electric vehicle (EV) charging data as a proxy. By 
applying algorithms like DBSCAN and a pre-trained 
human mobility model, the research effectively 
transforms EV charging logs into a detailed map of urban 
movement. Analyzing data from Shanghai, the study 
successfully correlates these synthesized mobility 
trajectories with actual human movement patterns, 
revealing a strong interplay between EV charging 
behavior and urban dynamics. This innovative approach 
not only offers fresh insights into urban energy dynamics 
but also respects individual privacy, marking a significant 
advancement in the field of urban planning and 
sustainable development. 
Keywords: electric vehicle, urban energy system, human 
mobility patterns, data-driven methodology  

1. INTRODUCTION 
The narrative of urban energy consumption is deeply 

interwoven with human movement—each journey tells 
a part of the city's story. Trajectory data, the digital 
breadcrumbs of our daily travels, hold immense 
potential for the energy sector. From forecasting 
demand to optimizing grid performance, understanding 
these pathways is pivotal. However, the private nature of 
trajectory data raises significant barriers, rendering it a 
sensitive and often inaccessible resource. Consequently, 
the energy industry has traditionally been constrained, 
unable to delve deeply into research that leverages these 
insightful datasets. 

The advent of electric vehicles (EVs) marks a 
transformative era in urban energy systems, significantly 
shaping the demand side of the equation. With the 
market penetration of EVs on a substantial rise, their 

charging behaviors have emerged as a major source of 
power consumption. EV charging activities account for a 
considerable proportion of electricity demand, a figure 
that is only expected to grow. Notably, the process of 
charging these vehicles generates detailed records that 
inadvertently map out human activity. 

This paper introduces a novel framework capable of 
repurposing EV charging logs into a reconstructed 
tapestry of human movement patterns, effectively 
circumventing the traditional barriers faced by the 
energy sector in utilizing trajectory data for urban 
studies. Furthermore, the model we propose extends 
beyond EVs, offering potential applications for various 
facets of energy demand-side records. 

The challenges of harnessing trajectory data for 
energy studies are manifold. Privacy regulations often 
preclude the direct use of such data, while the technical 
and logistical hurdles of anonymization can be 
formidable. The sensitivity of this data cannot be 
overstated, as it encapsulates the routines and habits of 
individuals across the urban landscape. This has led to a 
cautious approach within the energy sector, where the 
potential insights of trajectory analysis remain largely 
untapped. 

Electric vehicles stand at the vanguard of this 
changing landscape. As cities move towards 
electrification, the data generated by EVs offer a granular 
lens into the comings and goings of urban life. The 
charging stations scattered across the city do not merely 
represent energy nodes but are proxy indicators of 
human presence and movement. By harnessing this data, 
researchers can glean insights into urban dynamics 
without infringing upon individual privacy. 

The framework presented in this paper marks a 
methodological leap in the study of urban energy 
systems. Transforming EV charging data into a 
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representation of human mobility, unlocks a new 
dimension of analysis that is both privacy-conscious and 
rich in detail. This approach allows for the dissection of 
energy demand patterns, revealing the underlying 
human behaviors that drive them. 

The contribution of this work extends beyond 
technical innovation. It offers a new paradigm for urban 
energy studies—one that integrates the social patterns 
inherent in mobility with the physical infrastructure of 
energy consumption. By doing so, it provides a holistic 
view of urban energy dynamics that is crucial for the 
development of sustainable and resilient cities. 

2. RELATED WORKS  
The relationship between mobility, particularly 

human movement patterns, and energy consumption 
has been a subject of increasing interest in the field of 
urban planning and sustainable development. A notable 
study conducted in Trentino, Italy, demonstrated this 
connection by employing a highly parallelized feature 
extraction algorithm based on telecommunication data. 
This study highlighted that electric energy consumption 
exhibits cyclic characteristics, with predictable patterns 
that vary according to daily and weekly periods, and 
differ across residential, touristic, and city center or 
industrial areas [1]. This finding underscores the intricate 
relationship between human mobility patterns and 
energy demand. 

Further exploring the intersection of mobility and 
energy, the impact of electric vehicles (EVs) on urban 
energy systems has garnered significant attention. 
Research in California, for instance, has delved into the 
grid impacts of increased EV adoption, exploring various 
scenarios for EV charging, including different levels of 
home charging access and workplace charging. This 
research has been instrumental in modeling potential 
grid load under these scenarios, thereby proposing 
solutions to mitigate the increased demand due to EV 
charging [2]. The unique electrical consumption patterns 
of EV chargers have necessitated thorough studies across 
various sectors [3]. Adding to this, Garwa and Niazi's 
comprehensive review paper sheds light on both the 
positive and negative impacts of EVs on power grids, 
such as the benefits of peak load reduction and ancillary 
services via V2G technology and the challenges like 
decreased power quality and increased transformer load 
due to EV charging [4]. 

The modeling of human mobility also plays a crucial 
role in understanding energy consumption patterns. 
Joubert et al. have employed Bayes Network to 
investigate the causality of human activity and generate 

mobility patterns using activity-based models [5]. These 
active-based methods have been increasingly adapted to 
generate human mobility trajectories, replacing 
traditional survey-based or census-based methods [6]. 
Luca et al. developed DITRAS, a framework for simulating 
human mobility patterns, which includes a data-driven 
algorithm to generate a mobility diary capturing 
individuals’ routine-breaking tendencies [7]. Similarly, 
He et al. developed a framework for generating human 
mobility data in new cities by transferring knowledge 
from source cities [8]. Feng et al. proposed DeepMove, 
an attentional recurrent network, to address the 
challenges of complex sequential transition regularities, 
multi-level periodicity, and heterogeneity in human 
mobility prediction [9]. These models and frameworks 
are pivotal in enhancing our understanding of human 
mobility patterns and their consequent impact on energy 
consumption and urban planning.  

3. METHODOLOGY 

3.1 Extraction of key locations from EV charging records 
Determining key locations is essential for unraveling 

the relationship between human mobility and urban 
energy demand. We utilized the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) 
algorithm to cluster electric vehicle charging stations 
based on their activity levels. Stations surpassing a 
predefined activity threshold were classified as key 
locations, indicative of high charging density. The result 
of this process was a collection of geospatial coordinates 
pinpointing these key locations. To ensure privacy, these 
coordinates were then aggregated into a probability 
distribution, effectively anonymizing personal data while 
preserving the overall mobility trends. 
3.2 Building Life pattern matrix 

In this study, the term "life pattern" denotes the 
habitual mobility of individuals, characterized by regular 
activities and travel behaviors. These patterns are 
intricately linked to and can be inferred from location 
history data such as GPS, which reflects a person's 
routines and their interactions with various geographical 
locations. The analysis of life patterns involves high-
dimensional data encapsulating both time and space 
dimensions, presenting a complex challenge in clustering 
and extracting meaningful patterns from large-scale, 
unlabeled datasets [10].  
3.3 Utilizing a pre-trained human mobility generative 

model  
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To enhance our analysis of key locations extracted 
from EV charging records, we incorporated a pre-trained 
model. This model was previously developed using 
extensive datasets capturing various aspects of urban 
human mobility [11]. The pre-trained model was 
integrated with the EV charging data to achieve a more 
nuanced understanding of the charging locations' 
significance in relation to typical life patterns in Shanghai. 
This integration enabled us to interpret the identified key 
locations not just as points of energy consumption, but 
as part of the broader tapestry of urban life. In our study, 
the model was employed to predict the daily life patterns 
of EV users based on the temporal and spatial 
characteristics of their charging activities. By doing so, 
we aimed to uncover the interdependencies between 
energy consumption and the rhythms of city life. 
 
3.4 Synthesizing Trajectories from Life Patterns and Key 

Locations 
Building upon the pre-trained life pattern model and 

the identified key locations, we proceeded to synthesize 
human mobility trajectories. This step is pivotal in 
translating discrete data points into continuous paths 
that represent the movement of individuals across the 
urban landscape. 

We randomly sampled from the spatial coordinates 
probability table of key locations, which allowed us to 
anchor the life patterns within the physical space of the 
city. Then, we reconstructed the likely paths individuals 
might take between key locations by a map-matching 
algorithm OSMNX [12]. These paths were informed by 
the frequency and timing of EV charging events and were 

constrained by the road network and typical travel 
behaviors. 

4. EXPERIMENTS 
4.1 Data description 

This study leverages a comprehensive dataset 
encompassing the charging records of 1,994 electric 
vehicles (EVs) in Shanghai, spanning from October to 
December 2022. The dataset, kindly provided by the 
Shanghai New Energy Vehicle Public Data Collection and 
Monitoring Research Center, underwent a meticulous 
data cleansing process. Erroneous entries, such as 
duplicates, incomplete records, and statistical outliers 
indicative of atypical charging behaviors, were removed. 
Additionally, inconsistencies in the dataset's formatting 
were standardized to ensure uniformity. 

 
For the purpose of this analysis, we constrained the 

scope of our research to a defined experimental area, 
delineating an 11 by 14 kilometer rectangle within the 
urban matrix of Shanghai. Data points falling outside this 

EV charging data
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Figure 1. Framework of generating pseudo human mobility using EV charging data. 

Figure 2. Visualization of the 
experimental area.  
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specified region were excluded from the study. Figure 2 
presents a visual representation of this experimental 
area, which also serves to approximate the mobility 
patterns of the EVs within the selected urban section. 

besides, we have not only spatial and temporal 
records of EVs but also some detailed human movement 
records in this dataset. Therefore, we use the detailed 
movement as the ground truth trajectory while only 
using the charging information as the input of the 
experiments to show that we can generate pseudo-
human mobility from only charging records.   

To provide a comprehensive view of the EV charging 
data, we developed a visualization that maps the spatial 
distribution and frequency of charging events across the 
urban landscape. This geographic representation 
illustrates the density of charging activities at various 
locations, offering insights into urban mobility patterns. 
The visualization is color-coded to reflect the intensity of 
usage—darker hues correspond to higher frequencies of 
charging events. This allows for the immediate 
identification of hotspots where EV usage is most 
concentrated. 

4.2 Experiment settings  
The remainder of this paper is structured as follows: 

Section 2 reviews related work, highlighting the gap 
between energy demand studies and human mobility 
research. Section 3 details the methodology employed in 
developing the framework, while Section 4 presents the 
results of applying this framework to a dataset of EV 
charging records. Section 5 discusses the implications of 
these results for urban planning and smart city 
initiatives, and Section 6 concludes with a reflection on 
the findings and suggestions for future research.  

In the course of our investigation, we were able to 
successfully extract 5,111 key locations from the 

charging data of 1,975 electric vehicle users. These key 
locations, rich in detail, provided invaluable insights into 
the charging habits and mobility patterns within the 
urban landscape of Shanghai. However, given the 
sensitive nature of this data, which could potentially 
reveal personal information about the users, we took 
additional measures to ensure privacy. 

To mitigate concerns regarding user privacy, we 
aggregated these key locations into a probability table. 
This process involved a thorough anonymization 
protocol that transformed the individual location data 
into a statistical representation, thereby preserving the 
privacy of the individual EV users. The resulting 
probability table does not disclose any individual's 
specific charging patterns but instead offers a 
generalized view of the spatial distribution of EV charging 
events across the city. 

This approach allowed us to maintain the integrity of 
our research while adhering to stringent data protection 
standards. The probability table serves as a robust tool 
for analyzing urban energy dynamics without 
compromising personal privacy, thus striking a balance 
between the granularity of data and ethical research 
practices. 
4.3 Experimental results 

In Figure 3, we present a side-by-side visualization 
contrasting the generated pseudo-trajectories with the 
actual ground truth trajectories. This comparative 
analysis allows us to discern subtle variations between 

(a) 0:00

Ground 
truth

Pseudo
trajectory

(b) 6:00 (c) 12:00 (d) 18:00

Figure 3. Visualization of the human mobility pattern of ground truth and pseudo trajectory every 6 hours.  
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the modeled patterns and real-world behaviors. Notably, 
the visualization indicates that the ground truth data 
exhibits a propensity for users to travel along main 
thoroughfares. In contrast, the pseudo-trajectories 
depict a higher frequency of movement along smaller, 
less prominent roads. 

The divergence in movement patterns suggests that 
while the pseudo-trajectories capture a broad aspect of 
mobility within the urban environment, they may 
overestimate the utilization of minor roads. This 
observation could be attributed to the model's tendency 
to distribute trajectories more evenly across the 
network, rather than replicating the concentrated flow 
typically observed on major roads due to factors such as 
convenience and accessibility. 

 
4.4 Evaluation 

Our correlation evaluation between the ground truth 
trajectories and the generated pseudo trajectories yields 
insightful results. As summarized in Table 1, we noted a 
correlation coefficient (r-value) of 0.74, indicative of a 
robust statistical relationship between the two datasets. 
This high degree of correlation reinforces the validity of 
our pseudo trajectories in mirroring real-world mobility 
patterns on an aggregate level. The p-value, approaching 
zero, further supports the statistical significance of the 
correlation, suggesting that the observed relationship is 
unlikely to have occurred by chance. This provides strong 
evidence that our generative model captures the 
essence of the mobility patterns inherent in the ground 
truth data. 

Table 1. The correlation coefficient. 

r-values 0.74 
p-values 0.00 

An hourly analysis of the population distribution, 
illustrated in Figure 4, presents a different perspective. 

Here, we observe a spread of r-values between 0.4 and 
0.6, which, while lower than the overall correlation, still 
indicates a moderate positive relationship. These 
figures vary as they reflect the fluctuating nature of 
mobility patterns throughout the day. The task of 
aligning the pseudo trajectories with the hourly ground 
truth distribution poses a greater challenge due to the 
dynamic nature of human movements, influenced by 
daily schedules, traffic conditions, and social activities. 

  
Figure 5. Correlation of the aggreged population 
distribution between ground truth and pseudo 

trajectories. 
These lower hourly r-values, although expected, 

underline the complexities involved in temporal 
alignment. They suggest room for further refinement of 
the model, particularly in its capacity to adapt to the 
temporal granularity of mobility patterns. Enhancements 
to the model could involve integrating time-sensitive 
parameters that more accurately capture the ebb and 
flow of urban movement within each hour. Future 
iterations of this research may benefit from 
incorporating real-time traffic data and temporal 
behavioral models to achieve a closer match to the 
ground truth at finer temporal resolutions.  

(a) 0:00 (b) 6:00 (c) 12:00 (d) 18:00
Figure 4. Correlation of the hourly aggregated population distribution between ground truth and pseudo trajectories. 

Horizontal axis shows the population aggregated from pseudo trajectories while vertical axis is ground truth.  
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5. CONCLUSIONS 
This study presented a novel framework for 

extrapolating human mobility patterns from urban 
energy consumption records, with a focus on electric 
vehicle (EV) charging data. By leveraging a pre-trained 
life pattern model and identifying key locations from EV 
charging records, we were able to synthesize trajectories 
that reflect the movement of individuals throughout 
Shanghai. The findings reveal a strong correlation 
between EV charging patterns and urban mobility, 
suggesting that EV charging data can serve as a reliable 
proxy for human movements in the context of urban 
studies. 

While the study provides valuable insights, this study 
focused on EV charging data from Shanghai, which may 
not be generalizable to other cities with different urban 
layouts and transportation habits. Future research 
should aim to validate the model across different urban 
settings and explore the integration of additional 
datasets, such as public transport usage and ride-sharing 
data, to refine the synthesized trajectories. Further 
investigation into the temporal variations in mobility 
patterns could also yield deeper insights into urban 
energy consumption. 

In conclusion, this study contributes to the growing 
body of literature on data-driven urban studies and 
opens new pathways for research in the nexus of human 
mobility, urban planning, and energy management. 
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