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ABSTRACT 
  The increase in CO2 emissions has led to a series 

of environmental problems, including global warming, 
making it imperative to reduce CO2 emissions. 
Adsorption carbon capture technologies have been 
widely researched, but there is currently a lack of 
comprehensive research on the optimization of cyclic 
performance that considers multiple objectives. This 
paper focuses on temperature swing adsorption (TSA) 
and develops algorithms for cyclic performance 
optimization. It employs machine learning techniques to 
conduct multi-objective optimization of the cycle. The 
calculation time for the surrogate model is only 1/1000 
of the TSA mathematical model. The results indicate that 
the surrogate model obtained through machine learning 
accurately represents the cyclic performance under 
different operating parameters. There is a competitive 
relationship between productivity and exergy efficiency 
throughout the cycle. Recovery rate and exergy 
efficiency exhibit a dual relationship, both competitive 
and positively correlated. Purity and recovery rate show 
a purely positive relationship.  
 
Keywords: CO2, TSA, cycle performance, cycle 
optimization, cycle decision-making  
 

NONMENCLATURE 

Abbreviations  
ANN artificial neural network 
CCS carbon capture and storage 
GA genetic algorithm 
TSA temperature swing adsorption 
Symbols  
Pr Productivity 
Pur Purity  
Re Recovery rate 

 

1. INTRODUCTION 
Over the past few decades, due to extensive human 

use of fossil fuels, CO2 emissions have surged 
dramatically, leading to consistently high levels of CO2 
concentration in the atmosphere. Reducing CO2 
emissions has become a responsibility that all countries 
must bear. Among various technologies, carbon capture 
and storage (CCS) is considered a crucial technology 
capable of both reducing CO2 emissions and decreasing 
existing CO2 concentrations [[1]. CCS technologies 
encompass methods such as absorption, adsorption, 
membrane separation, and more. Among these, 
adsorption-based carbon capture has garnered attention 
from researchers due to its advantages, such as its ease 
of integration with real carbon sources and renewable 
energy sources, and it has witnessed rapid development 
over the past few decades [2,3]. 

There remains a gap between the performance of 
adsorption-based recovery cycles and the commercial 
standards required, including various performance 
metrics such as overall energy consumption, product gas 
yield, and purity [4]. Factors influencing the performance 
of adsorption cycles primarily fall into two categories: 
the choice of adsorbent material [5,6] and the 
configuration of the cycle [7]. Among these factors, the 
cycle configuration is of paramount importance and is 
notably intricate and subject to widespread 
investigation. In much of the previous research on cycle 
performance, attention has not been directed toward 
the multi-objective optimization of cycle performance 
considering the interplay of multiple factors [8,9]. 
However, previous studies have indicated that 
employing multi-objective optimization methods to 
explore the relationships among cycle performance 
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indicators can yield optimal operating conditions, which 
hold significant importance for cycle design [10]. 

This study focuses on temperature swing adsorption 
(TSA) which is more compatible with low-temperature 
waste heat. It involves the establishment of a cyclic 
computational model and a system of performance 
evaluation indicators. Employing machine learning 
techniques, surrogate functions are generated to 
represent the relationships between cycle performance 
indicators and cycle operating parameters. These 
surrogate functions, combined with cycle performance 
optimization algorithms, enable the rapid multi-
objective optimization of cycle performance, 
accommodating up to four objectives. 

Furthermore, based on the weighting requirements 
of the cycle performance indicators, decisions are made 
regarding the optimal performance of the cycle and the 
corresponding cycle operating parameters. This 
facilitates the fulfillment of diverse production demands. 

2. METHOD  

2.1 Adsorbents and equilibrium isotherms 

This article regards the waste gas to be recovered as 
a binary mixture of CO2 and N2 [11]. The adsorbent 
material used in the research case is Mg-MOF-74, which 
is one of the materials with excellent CO2 separation 
performance in metal-organic frameworks (MOFs). [12]. 
The adsorption equilibrium isotherms of this adsorbent 
for CO2 and N2 follow the Toth model form, as shown in 
Eq. (1) and Eq. (2). 

𝑞𝑘
∗ =

𝑞𝑚,𝑘𝐾𝑒𝑞,𝑘𝑦𝑘𝑝

(1 + (𝐾𝑒𝑞,𝑘𝑦𝑘𝑝)
𝑛𝑘)

1
𝑛𝑘

(1) 

𝐾𝑒𝑞,𝑘 = 𝐾0,𝑘exp(−
Δ𝐻𝑘
𝑅𝑇

) (2) 

The relevant parameters of the Toth model are from 
reference [13]. 
2.2 Temperature swing adsorption cycle model 

The TSA cycle is the process of using adsorbents to 
adsorb at lower temperatures and desorb adsorbed 
gases at higher temperatures [14], which is easy to 
combine with low-grade thermal energy and has 
economic benefits and advantages [15]. The TSA 
operation process studied in this article is divided into 
four steps: heating, cooling, pressurization, and 
adsorption. Figure 1 shows the four processes of TSA: 
 

 
Fig.1. Four steps of the TSA cycle 

 
In prior research, the authors established a 

computational model for the recovery of CO2 and N2 gas 
mixtures through a TSA cycle [16]. This model is founded 
on the principles of mass and energy conservation within 
the adsorption bed. It encompasses analytical or semi-
analytical expressions tailored to the characteristics of 
each cycle step. With given initial and constraint 
conditions, this model can solve for the state parameters 
within the adsorption bed at each point in time. Utilizing 
this model, computational simulations of the TSA cycle 
were conducted, and the obtained state parameters 
were subsequently used to calculate performance 
evaluation indicators for the cycle. 
2.3 Evaluation indicators for cycle performance 

In prior research, the authors established a 
computational model for the recovery of CO2 and N2 gas 
mixtures through a TSA cycle [16]. This model is founded 
on the principles of mass and energy conservation within 
the adsorption bed. It encompasses analytical or semi-
analytical expressions tailored to the characteristics of 
each cycle step. With given initial and constraint 
conditions, this model can solve for the state parameters 
within the adsorption bed at each point in time. Utilizing 
this model, computational simulations of the TSA cycle 
were conducted, and the obtained state parameters 
were subsequently used to calculate performance 
evaluation indicators for the cycle.  

Productivity (Pr) represents the amount of target 
gas captured per unit time and unit mass of adsorbent, 
as shown in E. (3). 

𝑃𝑟 =
𝑁𝐶𝑂2,ℎ𝑒𝑎𝑡/𝑡𝑐𝑦𝑐𝑙𝑒

𝜌𝑏𝑉𝑐𝑜𝑙
(3) 

Purity (Pur) represents the molar fraction of CO2 gas 
in the recovered product gas, as shown in Eq. (4). 

𝑃𝑢𝑟 =
𝑁𝐶𝑂2,ℎ𝑒𝑎𝑡

𝑁𝐶𝑂2,ℎ𝑒𝑎𝑡 +𝑁𝑁2,ℎ𝑒𝑎𝑡
(4) 

The recovery rate (Re) represents the capture rate 
of the target gas in the mixed gas by the cycle, as shown 
in Eq. (5). 



3 

𝑅𝑒 =
𝑁𝐶𝑂2,ℎ𝑒𝑎𝑡

𝑁𝐶𝑂2,𝑖𝑛
(5) 

Exergy efficiency (Eff) is expressed as the proportion 
of the minimum work for gas separation to the actual 
consumed thermal energy, as shown in Eq. (6). 

𝐸𝑓𝑓 =
𝑊min

𝑄𝑇𝑆𝐴 (1 −
𝑇𝐿
𝑇𝐻
)

(6) 

2.4 Cycle performance evaluation indicators 
The TSA calculation model needs to solve several 

differential equations, so if this model is brought into the 
cyclic optimization algorithm, the optimization process 
will take a long time, and other problems will easily 
appear in the calculation process. Therefore, this paper 
uses the machine learning method to get a substitute 
model and uses it to replace the TSA calculation model 
of cyclic performance index calculation in the 
optimization process. The substitution model is an 
alternative representation of the multivariable mapping 
structure of the input-output space constructed based 
on the TSA model calculation results as samples. The 
replacement model does not need to solve the 
differential equations repeatedly, so its combination 
with the optimization algorithm can significantly reduce 
the computational cost. Among many methods, artificial 
neural network (ANN), Kriging method, support vector 
regression, and response surface method are the most 
popular technologies [17]. In this study, artificial neural 
network methods are used to construct alternative 
models. After calculating enough sample data, the neural 
network model is built using MATLAB, and the 
Levenberg-Marquardt algorithm is used to solve the 
model instead. 
2.4 Genetic algorithm for multi-objective optimization 

Genetic algorithm (GA) is a mature multi-objective 
optimization tool that can serve as a method for loop 
optimization. A genetic algorithm is an evolutionary 
optimization algorithm that starts from an individual 
population and improves the value of the objective 
function through repeated screening processes across 
multiple generations [18]. This article uses a genetic 
algorithm combined with a substitute model to achieve 
multi-objective optimization with the established loop 
performance indicators as the goal. This article has 
successively considered the three objective optimization 
problems of Pr, Re, Eff, and the four objective 
optimization problems of Pr, Pur, Re, Eff. The above two 
multi-objective optimization problems are equivalent to 
the problems shown in equations (7) and (8). 

max(
𝑃𝑟
𝑅𝑒
𝐸𝑓𝑓

) = 𝐹(𝑇𝐿 , 𝑇𝐻 , 𝑝, 𝑦𝑖𝑛)

𝑠. 𝑡. {

𝑇𝐿min ≤ 𝑇𝐿 ≤ 𝑇𝐿max

𝑇𝐻min ≤ 𝑇𝐻 ≤ 𝑇𝐻max

𝑝min ≤ 𝑝 ≤ 𝑝max

𝑦𝑖𝑛min ≤ 𝑦𝑖𝑛 ≤ 𝑦𝑖𝑛max

(7) 

max(

𝑃𝑟
𝑅𝑒
𝑃𝑢𝑟
𝐸𝑓𝑓

) = 𝐹(𝑇𝐿 , 𝑇𝐻 , 𝑝, 𝑦𝑖𝑛)

𝑠. 𝑡. {

𝑇𝐿min ≤ 𝑇𝐿 ≤ 𝑇𝐿max

𝑇𝐻min ≤ 𝑇𝐻 ≤ 𝑇𝐻max

𝑝min ≤ 𝑝 ≤ 𝑝max

𝑦𝑖𝑛min ≤ 𝑦𝑖𝑛 ≤ 𝑦𝑖𝑛max

(8) 

In the Eq. (7) and Eq. (8), F represents the substitute 
model function. The optimization range of various 
operating conditions parameters is shown in Table 1. 
 

Table. 1. The research scope of working parameters 

 TL TH P yin 

Upper Bound 313K 440K 4bar 0.2  
Lower Bound 273K 330K 1bar 0.05 

 

3. RESULTS AND DISCUSSIONS 

3.1 ANN-based model 
Using the TSA calculation model established above, 

the cyclic performance indicators under the operating 
conditions within the range of Table 2 were calculated. 
Using the method of controlling variables, 11 gradients 
were selected within each operating parameter range, 
and the combined operating conditions were arranged in 
a cross manner. A total of 14642 sets of operating 
conditions parameters were selected, and their 
corresponding cyclic performance indicator values were 
obtained. Use the obtained data for the construction of 
the ANN function. Among them, there are 4 input 
variables and 4 output variables. 20 neurons were 
selected for construction, with 70% of the data used for 
training, 15% for verification, and 15% for testing. More 
than 98% of the calculated results of the final ANN 
function have data errors below 0.1, and the R2 of the 
fitting results is above 0.99999. There is no overfitting 
phenomenon, indicating that this substitute model can 
accurately replace the calculation results of the detailed 
model. 

Table. 2. Comparison of calculation time 

Type of model Solution time 

TSA mathematical model 1.0×106 s 
ANN-based model 43s – 504s 
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The two models are used to solve the performance 
parameters under different working conditions.  
Compared with the mathematical model of TSA, the time 
required for solving the ANN-based model can be less 
than 50s. 
3.2 Analysis of the relationship between cycle 
performance indicators 
 

 
Fig.2. The 3-dimensional Pareto front and its projection for 

the cyclic performance index 

In the Pareto optimal solution set, Pr and Re 
generally exhibit a positive correlation before 
competition. As Pr values increase, Re values will first 
increase synchronously. However, when the Pr value 
exceeds 200, further increasing the Pr value will cause a 
rapid decrease in the Re value. There is a competitive 
relationship between Pr and Eff throughout the process. 
As the Pr value decreases, the Eff value will increase, but 
the increased marginal benefit shows a result of first 
increasing and then decreasing. There is a dual 
relationship between Re and Eff that is both competitive 
and positively correlated, depending on the value of Eff. 
When Eff is less than 0.225, as Re increases, Eff will 
increase slightly. When Eff is greater than 0.025, Eff will 
significantly decrease with the increase of Re. 
 

 
Fig.3. Relationship between Pur and other performance 

indicators 

From the graph, it can be seen that in the Pareto 
solution set, there is a complete positive relationship 
between Pur and Re, while Pur and Eff exhibit a complete 

competitive relationship. There is a dual relationship 
between competition and a positive correlation between 
Pur and Pr. When Pr is greater than 200, the Pr value 
decreases as Pur increases. When Pr value is less than 
200, the situation is exactly the opposite. 
3.3 Analysis of optimal operating conditions parameters 

The values of the operating conditions parameters 
correspond to the Pareto front in the case of three 
objective optimizations. From Figure 4 (a), it can be seen 
that the optimal operating condition parameter set 
almost includes all TH values within the given range, 
indicating that blindly increasing TH values cannot 
optimize cycle performance. In the optimal working 
condition parameter set, increasing TH will cause Re to 
first increase and then decrease; Eff will decrease with 
the increase of TH; Pr shows an increasing trend 
throughout the entire process as TH increases. Figure 4 
(b) shows that the TL values in the optimal operating 
condition parameter set are all near the lower 
temperature boundary. Although the results of this study 
indicate that the lower the adsorption temperature, the 
better the cycling performance, additional cooling 
consumption is required below the ambient temperature 
to maintain low temperature. Therefore, it is advisable 
to use environmental temperature as the adsorption 
temperature in practical operation. From Figure 4 (c), it 
can be seen that the value of P in the optimal operating 
condition parameter set is between 127000 and 374000 
Pa, so excessive adsorption pressure will not bring 
sufficient performance benefits. At the same time, it 
should be noted that the relationship between the 
changes in P and the changes in various cycle 
performance indicators is relatively complex, and there 
is no obvious pattern to follow. Overall, adopting 
environmental pressure for adsorption pressure is a 
desirable behavior, as it does not incur compressor 
power consumption to maintain pressure. In Figure 4 (d), 
it can be seen that the values of Re and Pr corresponding 
to the intake concentration of 0.15 to 0.2 are relatively 
high, and considerable Eff values can also be achieved. 
However, it should be noted that the yin value is generally 
determined directly by the recovered gas source and 
does not undergo post-processing. Therefore, the 
analysis of yin is to distinguish the changes in cycle 
performance values corresponding to different gas 
sources. 
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Fig.4. Pareto front corresponding to the working parameters: 

(a) desorption temperature (b) adsorption temperature (c) 

adsorption pressure (d) inlet gas concentration 

 
For the additional results corresponding to the four 

objective optimization results, additional analysis is still 
conducted on Pur. Figure 5 shows the operating 
conditions parameters corresponding to Pur in the 
Pareto optimal solution set. 

 
Fig.5. Pur corresponding working parameters: (a) desorption 

temperature (b) adsorption temperature (c) adsorption 

pressure (d) inlet gas concentration 

 
From Figure 5 (a), it can be seen that increasing TH 

will result in a more satisfactory Pur value. Figure 5 (b) 
shows that the TL values corresponding to the optimal 
Pur range from 273 to 290 K, and the best Pur value is 
obtained when the TL value is around 290 K. Figure 5 (c) 
shows that there is no obvious pattern to follow for P, 
but it can be seen that there is a chance to obtain the 
best Pur value at 101300 Pa. Figure 5 (d) shows that the 
yin corresponding to the optimal Pur is mostly above 

0.14, but in low concentrations, the cycle parameters can 
also be adjusted to Pur values above 0.8. 

4. CONCLUSION 

This paper, using the TSA cycle as an example, has 
established a TSA cycle performance optimization 
algorithm. An ANN surrogate model has been obtained 
through machine learning algorithms to represent the 
relationship between operating parameters and cycle 
performance. By utilizing the ANN model, along with the 
established multi-objective cyclic optimization algorithm 
and cyclic performance decision algorithm, optimization 
and decision-making for up to four objectives have been 
performed, analyzing the relationships between the 
optimal cyclic performance and their corresponding 
cycle operating parameters. The study has also analyzed 
cyclic performance decision-making guided by the 
balance of cyclic performance. 

Through the research conducted, the following 
conclusions have been drawn: 

(1) The use of machine learning algorithms to obtain 
an ANN surrogate model has accurately represented 
cyclic performance under various operating parameters. 
The average errors for all four cyclic performance 
indicators are below 5%. 

(2) The Pareto-optimal solution set obtained from 
multi-objective optimization of the TSA cycle reveals the 
following relationships: Pr and Re exhibit an initial 
positive correlation followed by competition, Pr and Eff 
show a continuous competitive relationship, Re and Eff 
display both competition and a positive correlation, 
dependent on the value of Eff. Pur and Re show a 
complete positive correlation, while Pur and Eff exhibit 
complete competition. Pur and Pr demonstrate both 
competition and a positive correlation. 

(3) The optimal operating parameter sets nearly 
encompass all TH values within the given range, 
indicating that blindly increasing TH values may not 
optimize cyclic performance. The optimal operating 
parameter sets have TL values near the lower 
temperature boundary. The relationship between P 
variations and changes in various cyclic performance 
indicators is complex and lacks a clear pattern to follow. 
In the case of an inlet concentration ranging from 0.15 to 
0.2, Re and Pr values are relatively high. 
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