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ABSTRACT 
  The Solid Oxide Fuel Cell (SOFC) will play a crucial 

role in the future energy sector for green and efficient 
H2-fueled applications. However, the complex thermal 
dynamic characteristics and safety performances of 
SOFC/GT systems introduce significant computational 
challenges to design systems utilising SOFCs. A 
wind/P2G/SOFC/GT multi-energy system structure is 
presented in the paper to demonstrate integrated 
energy systems that achieve optimal technical and 
economic performance. To address the design challenge, 
artificial intelligence technology offers the promise of 
constructing an accurate SOFC model using a minimal 
amount of experimental data, thereby alleviating 
computational demands and accelerating calculation 
times. In this study, we have developed an ensemble 
learning model designed to capture the thermodynamic 
and safety performances of SOFC/GT systems. This 
approach can accelerate calculations while ensuring the 
validity of optimisation results. 
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NONMENCLATURE 

Abbreviations  

SOFC 
GT 
GA 
CR 
LCC 
RMSE 
MAPE 

solid oxide fuel cell 
gas turbine 
genetic algorithm 
curtailment rate 
life-cycle cost 
root mean square error 
mean absolute percentage error 

 

1. INTRODUCTION 
Decarbonisation of energy generation has become a 

significant issue for environmental and economic 
development persistence. 

A fuel cell-based system is considered one of the 
most important H2-fueled applications in future energy 
markets. Combined with a micro gas turbine and power 
to gas, the wind/P2G/SOFC/GT hybrid system provides a 
promising method of renewable energy utilisation with 
zero carbon involved. 

The complicated and thermodynamical coupled 
feature of SOFC/GT results in a narrow operation 
window and strict safety boundary [1]. Optimising such a 
system, with fluctuations in wind power and user 
demands considered simultaneously, appears to be a 
difficult task. In our previous work [2], a multi-objective 
optimisation was carried out using a genetic algorithm 
(GA). However, the algorithm requires a large number of 
samples, resulting in heavy computing pressure and 
unsatisfying calculating time. 

Machine learning methods offer a viable solution to 
overcome the limitations of mechanistic models, 
eliminating the necessity for intricate mathematical 
models involving partial differential equations. Instead, 
these methods directly gather insights from extensive 
experimental data to facilitate predictions. Despite the 
inherent non-linearity and the involvement of various 
physical and chemical processes in SOFC systems, 
previous research endeavours have adopted machine 
learning to forecast a range of operational parameters 
for fuel cells. For instance, Arriagada et al. [3] developed 
an artificial neural network-driven simulator to predict 
diverse operational parameters of SOFCs. Similarly, Song 
et al. [4] utilised a back propagation neural network, 
support vector machine, and random forest to forecast 
SOFC stack performance. Consequently, when subjected 
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to appropriate training procedures, machine learning 
models can rapidly predict system performance based on 
input parameters [5]. 

Based on our previous works [1,2], this study 
presented a wind-powered P2G integrated with a full-
detailed model of SOFC/GT was studied. The 
thermodynamic characteristic of the complete SOFC/GT 
system was captured via the ensemble learning 
technique. The algorithm simulated the critical safety 
performances of the hybrid system, as well as the 
available output power range and economic 
performance with the variation of multiple design 
parameters. The generated model was then cognised 
with wind power and P2G module, with the short-term 
operation and long-term planning performance 
optimisations carried out.  

2. SYSTEM STRUCTURE 

2.1 Wind/P2G/SOFC/GT introduction 

The structure of the wind/P2G/SOFC/GT multi-
energy system is shown in Fig. 1. Electricity generated 
from the wind turbine is used to support local demand. 
Due to the randomness of wind sources, when the wind 
power exceeds local demand, the excess power will be 
consumed by electrolysers to generate H2 from water. 
The H2 acquired is kept in a storage tank.  

When the wind power is insufficient to meet peak 
local demand, SOFC/GT will fill the gap as a backup 
power source using H2 from the storage tank. Both fuel 
and air are preheated in heat exchangers before entering 
the anode and cathode side of SOFC, respectively, where 
the electrochemical reaction happens. During this 
process, SOFC generates heat and electricity at the same 
time. The outlet's remaining H2 is entirely burned in the 
catalytic combustor. The exhaust gas of the combustor 

enters the micro gas turbine to generate power. The full-
detail thermodynamic model of the wind/P2G/SOFC/GT 
system is established on the MATLAB/Simulink platform. 

Several studies have been carried out on the energy 
system involving SOFC and gas turbines in our previous 
work [1][2][6], where experimental data have verified 
the modelling methodology. 

2.2  Modelling 

The anode-supported solid oxide fuel cell is selected 
in this study for modelling. The SOFC model [7] mainly 
includes electrochemical and thermodynamic models 
based on mass and energy balance equations. The micro 
gas turbine was modelled based on experimental data 
from an existing 30 kw-class turbine [8]. According to 
experiment results, the isentropic turbine efficiency 

presents a maximum close to 83%. 
Specific modelling equations and model validation 

could be found in our previous work [2, 6]. 

𝐻2 + 𝑂2− → 𝐻2𝑂 + 2𝑒− (1) 
1

2
𝑂2 + 2𝑒− → 𝑂2− (2) 

Local electricity and wind resource datasets from 
Scotland are used in this case [9]. Electrolysers produce 
H2 with the electrolysis of water powered by wind-
source electricity. Operating efficiency of 75% and 
0~100% operation load are assumed [1].  

𝜂𝐻𝐻𝑉 =
𝑀𝑓𝑢𝑒𝑙 · 𝐻𝐻𝑉𝐻2

𝑃𝑒𝑙

(3) 

2.2.1 Objectives 

The wind/P2G/SOFC/GT system aims to efficiently 
supply the electrical demands with high local renewable 
energy consumed at low system cost. Therefore, the 
optimisation objectives should include short-term power 
management and long-term economic costs. Here, wind 

 
Fig. 1. Wind/P2G/SOFC/GT structure 
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power's curtailment rate (CR) and life-cycle cost (LCC) 

were used as optimisation objectives： 

 

𝐿𝐶𝐶 = ∑ 𝐶𝐴𝑃𝐸𝑋i + ∑ 𝑂𝑃𝐸𝑋i/
r(1 + r)n

(1 + r)n − 1

𝑗

𝑖=1

𝑗

𝑖=1

(4) 

 

 

𝐶𝑅 =
∑ 𝑊𝑖𝑛𝑑wasted,P2G𝑡 + ∑ 𝑊𝑖𝑛𝑑wasted,storage𝑡

∑ 𝑊𝑖𝑛𝑑total𝑡

(5) 

 

where 𝑛 represents an operating lifetime of 20 years, 
and 𝑟 represents the discount rate, which is set as 8.9% 
in this study [1]. The curtailment rate of wind power 
includes the abandonment of wind power due to the 
operation limits of P2G and H2 storage.  

During the extreme operation conditions where both 
the wind plant and SOFC/GT could not support load peak, 
electricity power from the main grid would be used, and 
the price of grid electric power was included in the LCC 
calculation. To achieve a high renewable energy 
penetration rate, the total share of wind power sources 
during all-time operation should be above 90%: 

 

𝑠. 𝑡.
∑ 𝑊𝑤𝑖𝑛𝑑,𝑡𝑡

∑ (𝑊
𝑤𝑖𝑛𝑑,𝑡𝑡 + 𝑊𝑔𝑟𝑖𝑑,𝑡) 

≥ 90% (6) 

 

Design parameters and ranges for multi-objective 
optimisation were given below: 

 

 

2.2.2 Basic framework 

 
The framework of this study includes two parts: the 

wind/P2G model simulates the access H2 amount at any 
given time; the machine learning algorithm will capture 
the thermodynamic and economic characteristics of the 
SOFC/GT system, generating maximum and minimum 
limits of the H2 flowing rate and output power. Then, 
these statistics of subcomponents will be given to a 
power management module for operation 
determination. The multi-objective optimisation is 
carried out using GA. 

As can be seen, the most time-consuming part of the 
whole process is the determination of the maximum and 
minimum operation limits of SOFC/GT. This is due to the 
complicated mass and energy flows of the system. 
Critical safety standards must be met during every 
sample generated by GA, as well as total life-cycle 
operation. These requirements include SOFC operating 
temperature, SOFC temperature gradient, GT operating 
temperature, surge margin of compressor, and GT 
relative output power [1,2]. 

2.2.3 Machin learning algorithm 

We leverage an ensemble learning algorithm [10] 
that utilises multiple decision trees as base learners, 

Design parameters Variation range for optimisation 

Wind plant rated power 100 ~ 1000 kW 

Electrolyser power capacity 100 ~ 2000 kW 

Storage mass capacity 100 ~ 2000 kg 

SOFC cell number 900 ~ 1200 

SOFC utilisation ratio 0.7 ~ 0.85 

Gas turbine modelling factor 1.3 ~ 1.5 

Table.1. Optimisation ranges of parameters 

 
Fig. 3. Framework of wind/P2G/SOFC/GT system 

 

 

 
Fig. 2. Wind source and local demand data 
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rooted in the principles of gradient boosting. This 
approach enhances the model's performance by 
adapting to negative gradients, commonly called 
residuals, and the final prediction result is calculated by 
summing the results from all base learners. 

The algorithm's objective function consists of a loss 
function and a regularisation term, which are defined as 
follows:  

𝑚𝑖𝑛 𝑂 = ∑ 𝐿(𝑦
𝑖
, �̂�

𝑖
)

𝑛

𝑖=1

+ ∑ 𝛺(𝑓
𝑘
)

𝐾

𝑘=1

(7) 

where 𝐿  is the loss function, and 𝛺  represents the 
complexity of each weak learner, and can be expressed 
as: 

𝛺(𝑓
𝑘
) = 𝛾𝑇 +

1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

(8) 

where 𝛾  signifies the L1 norm penalty parameter, 𝑇 
represents the number of leaves, 𝜆  denotes the L2 
norm penalty parameter, and 𝑤𝑗 represents the weight 

of each leaf node. 
We adopted the second-order Taylor series of the 

loss function; the loss function can be derived as 

𝐿 (𝑦𝑖 , �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) 

≃ 𝐿(𝑦
𝑖
, �̂�

𝑖

(𝑡−1)
) + 𝑔

𝑖
𝑓

𝑡
(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖) (9) 

where gi  and hi  denote the first and second 
derivatives of the loss function, respectively. 

By integrating the above second-order expansion 
into the objective function. The objective function can be 
expressed as: 

𝑂(𝑡) ≃ ∑ [(∑ 𝑔
𝑖

𝑖∈𝐼𝑗

) 𝑤𝑗 +
1

2
(∑ ℎ𝑖

𝑖∈𝐼𝑗

+ 𝜆) 𝑤𝑗
2]

𝑇

𝑗=1

+ 𝛾𝑇 (10) 

where 𝐼𝑗  denotes as the collection of samples in leaf 

node j and eliminate the constant terms.  
Finally, the optimisation of the objective function in 

this form can be converted into the problem of finding 
the minimum of a quadratic function. 

We conducted uniform sampling across the valid 
range of three variables for system and fuel variables 
within each system, as shown in Fig. 3. These four input 
variables correspond to eight feature values used to 
assess safety conditions. We divided the data into 
training and test sets to create our datasets, adhering to 
an 8:2 split ratio. Additionally, we conducted 
hyperparameter optimisation for the ensemble learning 
model using the tree-structured Parzen estimator 
algorithm [11] before the training process. 

3. RESULTS 

3.1 Machin learning algorithm results 

We employed two metrics to evaluate model 
performance: RMSE (Root Mean Square Error) and MAPE 
(Mean Absolute Percentage Error). They are defined as: 

RMSE = √
1

𝑇
∑(y

t
− ŷ

t
)

2

T

t=1

(11) 

MAPE =
1

𝑇
∑

|𝑦
𝑡

− �̂�
𝑡
|

𝑦
𝑡

𝑇

𝑡=1

(12) 

where yt  represents the actual value, ŷt  is the 
forecasted value for the t-th observation, and 𝑇 is the 
total number of observations. The former are more 
sensitive to large errors, while the MAPE is more 
sensitive to small errors and outliers. The distribution of 
the mean absolute percent error is shown in Fig. 4. 

 

 
We can make several observations from this table. 

Firstly, the algorithm we employed demonstrates 
superior performance on both metrics, with Xgboost 
following, which is close in terms of algorithmic 
properties. Conversely, the performance of neural 
networks, frequently used in other studies, falls short of 
expectations. This discrepancy may be attributed to the 

 
Fig. 4. MAPE of training set and test set 

Algorithms RMSE  MAPE 

Polynomial Regression 324.21 0.0555 

Lasso Regression 1158.64 0.1071 

Xgboost 78.859 0.0048 

Feedforward NN (50*2) 1270.59 0.0910 

Random Forest 197.04 0.0061 

(This work) 42.73 0.0016 

Table.2. Prediction results of each algorithm 
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fact that we trained our models with a limited amount of 
data, and neural network models typically demand more 
extensive datasets compared to ensemble learning 
models [12]. 

3.2 System multi-objective optimisation results 

As shown in Fig. 3, after effectively building a ML 
surrogate model to replace the original thermodynamic 
explicit SOFC/GT simulation, the Pareto front of 
optimisation can be found rapidly and is given in Fig. 5. It 
can be seen that the rate of wind curtailment is 
decreasing with the increase of LCC cost, which indicates 
a trade-off between renewable sources utilisation and 
economic performance. According to the results, the 
total wind curtailment rate is expected to be lower than 
4.8% when the LCC is higher than 2,796,630 £.  

In this specific case, Fig. 6 shows the distribution of 
wind power generated in typical winter and summer 
scenes (two-week operation in both seasons). Results 
show that abandoning of wind power occurs in the 
minority of the timeline due to the power limit of the 
electrolyser. 

Table 3 compares the optimisation time in our 
previous work [1] and this study. It is clear that based on 
machine learning methods, the simulation and 
optimisation time is much lower than before. This is 
because the algorithm successfully captures the 
thermodynamic and safety performances of SOFC/GT, 
resulting in the model free of time-costing simulation for 
every sample generated during GA optimisation. These 
results above indicate the benefit of the paper’s 
framework. More detailed research on the 
characteristics of complicated energy systems could be 
carried out in future work. 

 

 

 

4. CONCLUSIONS 
This work introduces a machine learning-based, 

data-driven surrogate simulation framework to capture 
the complex thermodynamic and economic 
characteristics of the SOFC/GT system. A 
wind/P2G/SOFC/GT multi-energy system structure is 
presented in the paper to illustrate the potential H2-
fueled applications to facilitate renewable development. 
The prediction performance indicates that the RMSE and 
MAPE values for the test sets are 42.73 and 0.0016, 
respectively. This suggests that our ensemble learning 
model has comparable accuracy to the physical model 
while demonstrating a 37-time increase in computation-
resource efficiency. 
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