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ABSTRACT 
Amid the escalating concerns of climate change and 

the mounting research papers on carbon neutrality and 
waste-to-energy solutions, comprehending crucial 
knowledge and technological trends in the chemical and 
energy sectors has become challenging. This study 
presents a novel approach combining large language 
models (LLM) and knowledge graphs (KG) to facilitate AI-
supported knowledge retrieval. This work establishes a 
knowledge graph in the biochemical industry with 6,461 
nodes and 8,969 relationships, emphasizing material and 
energy flow integration with the autonomous AI 
workflow. The graph's node attributes and relationships 
are analyzed using cosine similarities, with the capability 
to trace back to original literature through DOIs. This 
method not only underscores the relevance of node pairs 
in the graph but also links their similarities to the physical 
and chemical properties of materials. To sum up,  this 
work provides an AI-enhanced tool that enables 
researchers and decision-makers to quickly build a 
knowledge base, learn about trends, and gain insights 
into specific fields. 
 
Keywords: natural language processing, knowledge 
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NOMENCLATURE 

Abbreviations  

LLM Large Language Model 
KG Knowledge Graph 
AI Artificial Intelligence 
API Application Programming Interface 
NLP Natural Language Processing 
NER Named Entity Recognition 

RE Relationship Extraction 

 

1. INTRODUCTION 
The pressing concern of climate change necessitates 

a paradigm shift in industries, especially in the chemical 
and energy sectors, towards sustainable practices. 
Central to this transformation is the circular economy 
model, which prioritizes efficient resource utilization, 
waste minimization, and energy efficiency. This 
approach aims to enhance production outputs while 
concurrently mitigating environmental degradation. 
However, an ever-expanding volume of research articles 
addressing waste-to-energy solutions, carbon neutrality, 
and integration techniques has made comprehensively 
navigating this knowledge sphere daunting. 

In light of this, various innovative methodologies 
have emerged to tackle this challenge. For instance, 
Trokanas et al. [1] used an ontological semantic method, 
which was specifically designed to discern substance 
flow matching opportunities within industrial symbiosis. 
Complementing this, Davis and Aid [2] introduced an 
automated approach that utilized word vectors to 
pinpoint potential waste streams that could serve as 
alternative feedstocks, by gleaning information from a 
vast corpus of waste valorization literature and patents. 

In this context, recent advancements in Artificial 
Intelligence (AI) provide useful tools, addressing the 
overflow of information mentioned earlier. Notably, 
cutting-edge language models, such as ChatGPT, have 
exhibited strong capability in tasks ranging from natural 
language understanding to generating nuanced human-
like text. Furthermore, when armed with apt ontology 
and tailored prompts, these models show the potential 
to build comprehensive knowledge graphs [3]. Such 
innovations have great potential in accelerating research 
endeavors, facilitating swifter information extraction 
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from extensive literature collections, and thereby 
helping to address complex issues like integrating 
material and energy flows in the biochemical field. 

To make the most of this opportunity, our research 
utilizes the capabilities of ChatGPT (gpt-3.5-turbo) for 
information extraction and creates an automatic 
workflow to construct a knowledge graph. This AI-
assisted method searches through academic literature, 
gathering important data, and using it to automatically 
build a detailed knowledge graph. The main benefit of 
this graph is its ability to combine various fields of 
knowledge related to material and energy flow 
integration within the biochemical sector. The 
constructed knowledge graph not only acts as a 
comprehensive knowledge base but also offers useful 
insights into potential integration strategies, further 
supporting the principles of the circular economy within 
the industry.  

2. METHOD  
Figure 1 shows the overall framework of this work. 

This research framework starts with sourcing literature 
articles. Through Elsevier's Text Mining API, relevant bio-
chemical waste valorization articles are retrieved. Next, 
ChatGPT is prompted to perform natural language 
processing (NLP) tasks such as named entity recognition 
(NER) and relationship extraction (RE) to extract 
pertinent details about material properties and the 
valorization process. While the data aids in forming an 
initial knowledge graph, further manual refinement of 
the knowledge graph is still necessary. To enrich the 
graph further, data from Google's KG is used, focusing on 
the informational content of the material flow nodes. 
Finally, the Node2Vec algorithm is utilized to produce 
node embeddings to calculate cosine similarity and 
identify nodes with similar topological structures. More 
information is detailed in the below subsections. 

 

2.1 Data Collecting and Processing 

To curate the foundational literature for our 
research, we used the Text Mining API provided by 
Elsevier. The following query keywords are used to target 
biochemical waste valorization-related literature: “title-
abs-key(Organic Waste OR Biomass OR Biological waste) 
AND title-abs-key(Material Exchange OR Waste 
Valorization)”. 

2.2 Information Extraction with ChatGPT 

Following multiple rounds of prompt refinements, 
we have identified two primary NLP tasks: Named Entity 
Recognition (NER) and Relationship Extraction (RE). Both 
tasks are designed to yield improved results. 

As shown in Table 1, for the NER task, we have 
specifically outlined ChatGPT's responsibilities and 
provided a detailed description of its intended purpose. 
We chose JSON as the output format because it is easily 

 
Fig. 1. Framework of automated information 

extraction by ChatGPT, knowledge graph construction 
and prediction workflow 

  
 
 

Table 1. Prompts used for NER and RE tasks 

Named Entity Recognition Prompt: 
Task: Extract and categorize named entities from 

a given text. 
Task 1: Extract Named Entities from the text. 
Task 2: Categorize each entity using Wikidata-

style classes (e.g., ClassName). 
Task 3: Identify properties describing the 

entities. Name properties in camelCase (e.g., 
propertyName). 

Output Format: 
{"Entities": [{"entity": "exampleEntity", 
"abbreviation": "exampleAbbreviation", 
"class": "exampleClass", 
"properties":{"PropertyName1": ["value1"], 
"PropertyName2": ["value2a", "value2b"]}}]} 

Relationship Extraction Prompt: 
Task: Identify relationships between entities 

based on given text. 
Direction: Ensure correct relationship direction 

from context. 
Format: Name relationships in 

UPPERCASE_SNAKE_CASE (e.g., USED_IN). 
Entities and Classes: Provided in the list below. 
<Output from NER task> 
Output Format: 
{"relations": [{ "relation": "exampleRelation", 
  "from": {"class": "exampleClass1","entity": 

"exampleEntity1"}, 
   "to": {"class": "exampleClass2", "entity": 

"exampleEntity2"}}]} 
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imported into Python and Neo4j for building knowledge 
graphs. 

For the RE task, we leverage the entities recognized 
during the NER phase. ChatGPT's roles and goals are also 
clearly defined in this context, along with information 
about the expected output format. 

2.3 Knowledge Graph Construction 

We used data from the NER and RE tasks and 
imported them into Neo4j to build our knowledge graph. 
A key component in building this graph is ontology, 
which defines the types of entities and how they relate 
to each other. Given the context provided, we are 
concentrating on material transformation. Mainly, we 
recognize two entities: "Matter" and "Process." The 
"Matter" entity covers resources, waste, intermediate 
products, and final products. The "Process" entity 
describes how materials change, identified by attributes 
like name, type, and related technologies. 

Using ChatGPT, we generate entity tags based on the 
context of the original text, which sometimes leads to 
variations or multiple tags for the same concept. This 
calls for aligning or merging tags that refer to the same 
thing. As an example, different relationship tags like 
“USE_IN”, “USED”, and “USED_FOR” might be combined 
into one, and similar node labels like 
“ChemicalSubstance” and “ChemicalSubstances” could 
be unified. 

Optimizing downstream tasks for material flow 
prediction, the node labels generated by ChatGPT 
underwent further refinement. Nodes pertaining to 
materials are categorized under the "Material" label, 
encompassing all tags related to materials. Conversely, 
nodes concerning processes are collated under the 
"Process" label, as shown in Figure 2. 

2.4 Knowledge Fusion with Google KG 

Google's Knowledge Graph is a vast repository of 
factual information stored in graph format. The 
information in this graph is sourced from open datasets, 
web pages, books, etc. Google offers the Knowledge 
Graph Search API [4], which developers can use to query 
the Google Knowledge Graph and retrieve related 
information. By leveraging Google's Knowledge Graph, 
descriptions, definitions, and web links for entities in the 
local knowledge graph can be enhanced. 

2.5 Calculating Node Similarity 

In our work with knowledge graphs, we used 
Node2Vec to create node embeddings. Node2Vec is 
based on deep learning concepts and is adapted from the 
Word2Vec model [5]. But instead of words, it creates 
vector representations for nodes using random walks on 
graphs. 

After generating these embeddings, we measured 
the similarity between nodes by computing the cosine 
similarity between their embeddings [6]. This allows us 
to identify nodes with similar structures or 
characteristics in the knowledge graph, giving us 
valuable insights.  

3. MATERIAL AND METHODS 

3.1 NER and RE task performed by ChatGPT 

Using the application of ChatGPT for the 
construction of the knowledge graph related to the 
valorization of bio-engineering waste, this research 
automated the extraction of entities and their attributes 
and relationships from the literature. The utilization of 
ChatGPT considerably simplified the named entity 
recognition (NER), relationship extraction (RE), and 
attribute extraction processes. 

Post multiple prompt engineering iterations, notable 
stability in extraction results was achieved. A total of 
11,065 entities were identified. The unique labels of 
these entities summed up to 3,089, out of which 145 
labels appeared more than ten times. The relationship 
extraction task produced a total of 20,654 relationships. 

To optimize downstream tasks related to material 
flow prediction, nodes related to materials are labeled as 
“Material” while those related to processes are labeled 
as “Process”. The final subgraph consists of 6,461 nodes 
and 8,969 relationships, with 1,548 unique node tags and 
964 unique relationship tags. Figure 3 shows the word 
cloud of named entities and relationships generated by 
ChatGPT.   

Fig. 2. Ontology of material valorization process 

 
 

 
Fig. 3. Word cloud of named entities (left) and 

relationships (right) generated by ChatGPT 
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3.2 Predicting and explaining similar nodes 

Node embeddings generated by Node2Vec are 
utilized to calculate cosine similarities between nodes, 
revealing some shared properties. 

Some node pairs with high cosine similarity can be 
explained by analyzing their structure. For example, 
"Surfactin", "Sophorolipids", and "Rhamnolipid" have a 
similar structure in the knowledge graph as shown in 
Figure 4. They can be obtained from dairy products, food 
processing industries, and agricultural fertilizers and can 
be further-processed to produce biosurfactants. In 
addition, they also have a broad spectrum of applications 
including in water treatment.  

4. CONCLUSIONS 
In this work, we developed an AI-supported 

workflow that uses ChatGPT to extract information from 
a collection of literature articles and maps material flow 
in the bio-chemical engineering field in the form of a 
knowledge graph, and calls Node2Vec to analyze the 
graph's structure. It is aimed to assist stakeholders 
amidst growing discussions on waste valorization and 
carbon neutrality. However, the literature scope of this 
study was limited, which affected the depth of the 
knowledge graph. In addition, although ChatGPT was 
effective in extracting entities, it struggled with 
consistent labeling and handling of large-scale data. In 
future endeavors, we will broaden our literature base, 
fine-tune NLP techniques, and diversify our analytical 
approaches. We will also use other analytical methods 
besides Node2Vec and cosine similarity to gain more 
insights into material flows in biochemical engineering 
and other energy-saving and carbon-neutrality-related 
fields. Such progressions would offer invaluable insights 
and enriched resources for industry stakeholders. 
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Fig. 4. Graph of relationships between surfactin and 

sophorolipids 


