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ABSTRACT 
  Climate change has been a pressing global issue 

and people are experiencing more frequent and severer 
extreme weather events. In South Korea, extreme heat 
has been drawing much attention in recent years due to 
its significant impact on public health and energy and 
water consumptions. Extreme heat is particularly 
exacerbated by the urban heat island (UHI) effect in 
cities. Many studies have examined the relationship 
between urban form factors and surface UHI empirically. 
But few of them have studied how UHI changes in 
response to an extreme heat event, termed heat 
resilience in recent studies. Additionally, most of current 
studies used traditional regression models assuming 
linear relationships, which may not be the case for UHI 
effects. To address this gap, this study aims to identify 
nonlinear relationships between urban form factors and 
land surface temperature (LST) and heat resilience, using 
machine learning methods. The study adopted the 
gradient boosting decision tree (GBDT) models to predict 
LST and heat resilience and compared the findings with 
those using spatial regression models. The results 
suggest that the GBDT model has a higher prediction 
power than traditional regression, and the GBDT models 
show that the urban form factors have nonlinear 
relationships with LST and heat resilience under extreme 
heat. The findings of the study provide valuable guidance 
for urban planning practice aimed at prioritizing planning 
elements in urban form toward heat-resilient cities. 
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1. INTRODUCTION 
Climate change has been a significant global concern 

since the publication of the first IPCC report in 1990. 
There has been a growing alarm about the climate crisis 

as we increasingly encounter situations that directly 
affect human life, such as extreme weather events, 
ecosystem collapse, and food crisis. For example, 
extreme heat in South Korea has become an increasingly 
important issue in recent years due to the impact of 
climate change. Summer of 2018 was the hottest on 
record in Korea, with temperatures consistently soaring 
above 35℃. In response to the extreme heat in 2018, the 
Korean government implemented various measures, 
such as free cooling center, temporary water stations.  

However, these phenomena can manifest different 
impacts depending on the characteristics of the region, 
especially the physical environment. Urban areas are 
more vulnerable to extreme heat. Urban areas account 
for only 2% of the world’s land area, yet they contribute 
to 80% of GDP, 66% of energy consumption, and 75% of 
greenhouse gas [3, 6]. In urban areas, buildings are 
densely populated and there is a lack of green spaces 
compared to the suburbs, a lot of risk occurs during the 
summer due to extreme heat events, as the urban area 
absorbs the heat during the day [35]. Therefore, this 
study aims to understand the impact of the physical 
urban environment on extreme heat, classifying urban 
form factors into building density and land cover, and 
assessing how these variables affect land surface 
temperature (LST). In addition, the purpose of the study 
is to answer the research question: how and to what 
extent do the urban form factors affect LST and heat 
resilience on extreme heat days?  

2. LITERATURE REVIEW 

2.1 Urban form factors and urban heat island effect 

Urban areas are primarily composed of dense 
buildings, which typically have lifespan of over 50 years. 
Thus, it is crucial to analyze the building characteristics in 
urban areas and discuss how to apply analyzed data in 
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response to climate change. Previous studies found that 
urban form factors, including the built environment and 
land cover, have played a significant role in increasing air 
temperature in urban areas, well known as Urban heat 
island (UHI) effect [2, 4, 5, 27].  

A closer look at the urban form factors discussed in 
the previous research, NDVI and NDBI, such as artificial 
materials and impervious surface are more vital 
indicators associated with the UHI effect [11]. For 
example, the road density and the ratio of lack of green 
space area were highly positively correlated with heat 
vulnerability and extreme heat risk in the Taipei 
metropolitan area in Taiwan [2]. According to the studies 
of Chun, Guldmann, and Guhathakurta, building ground 
foot area, solar radiation, and sky view factor had more 
substantial negative effects on the UHI during summer. 
Also, increased greenery, water bodies, and NDVI 
reduces temperatures in summer and increases it in 
winter, the most important mediators of excess heat [3-
5]. According to Turner and Galletti, dense urban 
development does not always indicate a higher UHI 
effect. They emphasized that well-designed compact 
development could reduce UHI effect than compared to 
sprawling development [32]. 

As for the methodology of analyzing urban form 
factors and the heat environment, most of the research 
related to the relationship focused on analyzing the 
relationship between LST and variables of the built 
environment [2, 20]. Most of them used methods to 
identify the relationship through OLS regression analysis, 
it shows that both green space and river areas contribute 
to reducing surface temperature. Another study 
indicates that sprawling cities are more vulnerable to 
extreme heat than compact cities [29]. These traditional 
regression models, however, assume that urban form 
factors are linearly associated with LST, which may not 
be the case [14].  

2.2 Extreme heat event 

As mentioned above, the UHI effect exacerbates 
extreme heat, and the intensity of this effect is 
influenced by urban form, compared with rural areas [26, 
28]. Such an effect should also be paid more attention to 
under climate change [19]. Therefore, we need to 
consider the risks to urban residents, such as public 
health and infrastructure with more frequent and 
stronger extreme heat events [12, 16]. Extreme heat 
events can be defined as daily high temperature or 
average temperature beyond some degree point for at 
least two or four days [33]. The heat metrics and 
duration of day vary by country; for example, extreme 

heat is defined with a daily maximum temperature 
higher at 33℃ for at least two consecutive days in South 
Korea. Most studies have been conducted on identifying 
the spatial distribution of extreme heat, evaluation of 
damage risk indicators, and heatwave vulnerability. 
Additionally, from a climate justice perspective, 
numerous studies have analyzed the spatial relationship 
between socioeconomic factors such as demographic 
characteristics (single-person households, low-income 
households, the elderly population, etc.) [7, 15, 23]. 

2.3 Urban heat resilience 

In recent years, “resilience” has become an essential 
concept in socio-ecological systems and policy 
management in urban research [1, 21, 22]. The studies 
commonly emphasized that resilience is the ability to 
respond or recover from unpredictable, frequent, and 
intense extreme weather events. To improve heat 
resilience in urban areas, urban planners must manage 
urban form factors including building density and land-
use, a crucial component of urban heat planning [21]. For 
example, urban greening (green area, park, green roofs 
or wall) also needs to be considered as potential factors 
that increase “adaptive capacity” by improving resilience 
in cities [17]. Although the importance of heat resilience 
has grown, as noted earlier, the measurement of 
resilience is rare in the literature [35]. For these reasons, 
a recent study measured heat resilience as the LST 
difference between normal and extreme heat events in 
Macau, China. They emphasized that the approach can 
be useful information to define urban heat resilience in 
improving the “adaptive capacity” to extreme heat 
events in urban areas [18, 35]. 

2.4 Machine learning approach 

In recent years, machine learning methods have 
been widely used in many fields, such as disease 
diagnosis, stock market prediction, image recognition, 
and classification. Also, it became one of the compelling 
methods in territorial science and urban planning field. 
Gounaridis et al implemented a Random Forest Model to 
predict future land use/cover under the premise of 
economic performance scenarios [10]. Additionally, the 
other authors conducted an analysis predicting urban 
growth by comparing various machine learning 
algorithms (LR, RF, ANN, and EGB), and it shows that 
machine learning algorithms have improved predictive 
power compared to traditional regression analysis [13, 
30]. Also, machine learning algorithms are potent tools 
for browsing nonlinear relationships and threshold 
effects [37]. 



3 

Among machine learning algorithms, the gradient-
boosting decision trees (GBDT) model, a tree-based 
ensemble model, is widely used in transportation. 
According to previous studies, its prediction is more 
accurate than the regression model and can handle the 
multicollinearity issue [8, 9, 36]. More importantly, it 
better reveals the patterns of nonlinear relationships 
between variables than traditional linear regression 
methods [31, 34].  

The interpretability analysis of such a machine 
learning model can further provide a better interpretable 
result that make easier decision for human [24, 25]. 
Partial dependence plot (PDP) and feature importance 
function are often used to visualize and analyze the 
results of gradient boosting models. PDPs show the 
dependence between the target function and a set of 
features of interest, marginalizing the values of all other 
features (the complement features). The SHAP function 
was used to measure feature importance, which is based 
on the Shapley value and derived from coalitional game 
theory [24]. 

This study chose the GBDT algorithm implemented 
as the GradientBoostingRegressor class in the scikit-learn 
library to identify the nonlinear relationship between 
urban form and UHI, and PDPs and SHAP value-based 
feature importance for interpretability analyses. 

3. METERIAL AND METHODS 
Seoul is the capital of South Korea and the hub of 

politics, economy, society, and culture in the nation. The 
total area is 605 km², which covers 0.61% of the entire 
South Korea, consisting of a total of 25 districts and 426 
neighborhoods (Fig 1). The scope of this study is based 
on 3,217 cells in the entire Seoul with 450m x 450m grid. 
The grid size is decided based on the previous literature 
and 30m resolution of the LST image. For an accurate 
result, this study used 2,760 cells, excluding those partial 
cells on the boundary of Seoul. 

The study selected regular heat day and extreme 
heat day for analysis from a time period between May 
1st and September 30th (Summer season in South Korea) 
over ten years from 2012 to 2023. To extract the LST, 
Landsat satellite images published on the USGS-Earth 
Explore website were used. The selected extreme heat 
day is May 30th, 2020, which had the 30.0℃ air 
temperature above the 85th percentile of all 
temperature values during the time period [30, 32]. The 
regular heat day was selected as September 19th, 2020, 
with the 26.2℃ air temperature. The cloud covers of 
both dates are within 20% (regular heat day:16.79% and 
extreme heat day: 12.81%). ArcGIS pro and Python were 

used for calculating LST, analyzing urban form factor and 
implementing machine learning models. 

 
To measure heat resilience, this study adopted the 

definition of the LST difference between regular and 
extreme heat day as a heat resilience temperature from 
Xi et al.’s study [32]. The LST maps on the regular and 
extreme heat days and the heat resilience map are 
shown in Figs 2, 3 and 4. In this study, regular heat day 
LST (Regular_LST), extreme heat day LST (Extreme_LST), 
and heat resilience (HR_T) are dependent variables for 
three models. A total of 8 independent variables are used 
to measure three types of urban form factors: building 
density, land cover, and large-scale landscape. They 
include: building coverage ratio, building height 
variation, NDVI, waterbody ratio, elevation, distance to 
park, distance to stream, distance to mountain. Two 
more variables were added, the latitude (loc.y) and 
longitude (loc.x) of the center of each grid cell, 
representing cell locations.  

 

 
 
 
 
 

Fig. 1. Study area (Administrative boundary in Seoul) 

 
Fig. 2 Distribution of LST on regular heat day 
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In the training of GBDT models, data are usually split 

into training and test data sets. However, due to small 
sample size, the study used all data for cross validation in 
training. To tune the hyperparameter, the study used 
grid search to compare performance of hyperparameter 
combinations in three models: the learning rate in (0.01, 
0.1, 0.2, 0.3, 0.4, 0.5), number of trees in (50, 100, 150, 
200, 250, 300), and tree depth in (2, 3, 4, 5, 6). The study 
developed spatial regression models for comparison. 

4. RESULTS 
The results showed that the most critical variables 

affecting the LST and heat resilience were the building 
coverage ratio and NDVI average (Figs. 5-7). In addition, 
the feature importance plots concluded that the extreme 
heat LST and heat resilience are relatively more affected 
by landscape features, such as the distance to mountain, 
distance to stream, and waterbody ratio, compared with 
regular heat LST. The results generally support the 
findings from previous literatures that built-up area and 
green area are important for UHI. However, distance to 
park and building height variation are less important 
variables in all three models. The relationships between 

dependent and independent variables become better 
revealed through PDPs, which show the effective range 
for each variable (Figs. 8-10). 
 

 

 

The predicted extreme heat LST and heat resilience 
show more nonlinear relationship compared with regular 
LST. For example, in PDPs for regular LST, the predicted 
LST decreases when the NDVI value increases beyond the 
threshold 0.1 (Fig 11), and the increased distance to 
mountain does not show obvious effects until 7000 
meters and threshold after that point (Fig 12). But in PDP 
for extreme heat LST, the increased SVF has greater 
effects on LST when it is more than 0.7, with a change 
from around 35.2℃ to reach 38.0℃ (Fig 13). The 
predicted heat resilience increases with increased SVF 
until 0.8, after that point the effect becomes negative, 
showing a complex pattern (Fig 14).  

 
Fig. 4. Distribution of heat resilience temperature 

 
Fig. 5. Feature importance in Regular LST 

 
Fig. 6. Feature importance in Extreme LST 

 
Fig. 7. Feature importance in HR_T 

 
Fig. 3. Distribution of LST on extreme heat day 
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Fig. 11. PDP for NDVI in Regular_LST 

 

Fig. 12. PDP for distance to mountain in Regular_LST 

 

Fig. 13. PDP for sky view factor in Extreme_LST 

 

Fig. 14. PDP for sky view factor in HR_T 

To understand the model performance in GBDT, this 
study compared R-squared, mean squared error (MSE), 
and mean absolute error (MAE) values with spatial lag 
model (SLM) (Table 1 & Table 2). Based on the results, 
the GBDT model has higher performance than spatial 
regression model with higher R-squared, smaller MSE 
and RMSE. 

Table 1. Comparison between SLM and GBDT in LSTs  

 Regular_LST Extreme_LST 

Model R2 MSE RMSE R2 MSE RMSE 

SLM 0.894 1.028 1.014 0.718 6.510 2.551 

 
Fig. 8. Partial Dependence Plot for Regular LST 

 
Fig. 9. Partial Dependence Plot for Extreme LST 

 
Fig. 10. Partial Dependence Plot for HR_T 
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GBDT 0.991 0.080 0.284 0.870 2.990 1.729 

 

Table 2. Comparison between SLM and GBDT in HR_T 

 HR_T 

Model R2 MSE MAE 

SLM 0.249 6.853 2.617 

GBDT 0.553 4.055 2.013 
 

5. CONCLUSIONS 
This study examines the relationship between urban 

form variables and UHI performance in Seoul, including 
regular LST, extreme heat LST and heat resilience. The 
overall results of this study indicate that impervious area 
ratio is the most influential variable for LST and heat 
resilience. At the same time, building density also affects 
LST because of the strong correlation between building 
density and the impervious area ratio. Additionally, 
building coverage ratio and NDVI are also important 
factors. The study suggests a nonlinear relationship 
between urban form factors and LST and heat resilience. 
Especially PDPs can show the effective range for each 
variable. 

In general, the study contributes to a better 
understanding of influence of urban form factors on UHI 
effects in extreme heat events, especially important ones 
such as building density, land cover, and large-scale 
landscape. The findings, therefore, inform urban 
planning and design in adaption to climate change more 
effectively by prioritizing the factors. 

5.1 Policy implication 

Urban planners need indices for planning urban 
spaces that can mitigate or adapt to extreme heat. The 
results of this study can be a basis for developing a 
decision-making tool with a better understanding of the 
importance of variables in affecting heat resilience. The 
developed models could also be used for evaluating the 
effect of urban and environmental plans, climate-related 
projects and environmental policies by urban planners, 
policy drafters, and various stakeholders. 

Urban planners and designers can collaborate to 
make land-use regulations and streetscape guidelines 
focusing on heat mitigation strategies by using cooling 
pavements for pedestrian ways and roads, green walls, 
and roofs. Firstly, we need to understand the urban form 
factors in each region. For example, according to the 

Land Planning Law in Korea, the appropriate area of park 
and green space for urban development projects should 
be 6m2 per resident. However, there is a possibility of a 
generalization error that does not reflect the 
characteristics of each region. In that case, this study 
anticipate that we could predict the appropriate building 
density suitable based on each religion’s characteristics. 

5.2 Limitation 

The LST can be one indicator defining extreme heat. 
However, it cannot explain all aspects of extreme heat 
characterized by many factors such as air temperature, 
relative humidity, and individual socio-economic 
situations. Therefore, conducting analysis based on LST 
is limited in understanding extreme heat. In addition, 
satellite image has limitations in their quality (season, 
cloud cover, interval, and time). It is challenging to 
extract surface temperatures due to a large amount of 
cloud cover from May to September when extreme heat 
events are concentrated, because it usually overlaps with 
the rainy season. 

Hence, in future studies, the scope of research can 
be expanded by conducting a time-series analysis 
accompanied by collecting temperature and humidity 
data on an hourly basis based on real-time urban sensor 
data through machine learning techniques. In addition, 
this study has a limitation in that it only has only two time 
points in one year. It is not enough to generalize the 
whole summer season. If future studies use multi-year 
data with time-series analysis, it is expected to provide 
more accurate and meaningful results. 

As extreme heat events become increasingly 
frequent and severe, many cities aim to build urban 
environments with a strong capability to recover from 
those events. However, there is still a lack of standards 
to measure or monitor heat resilience. In future studies, 
it would be beneficial to have a standard evaluation or 
monitoring method for comparative analyses across 
regions. With those improvements, the results of this 
study would be a better aid for urban planners to identify 
areas that are particularly vulnerable to climate risks. 
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