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ABSTRACT 
  In the face of current global energy challenges 

and the growing significance of energy efficiency and 
carbon neutrality, the optimization of control strategies 
for industrial energy supply systems has gained 
importance. Deep Reinforcement Learning (DRL) 
presents a promising opportunity for control strategy 
optimization, leading to substantial reductions in 
operating costs and carbon emissions. The lack of 
interpretability of such black box models however is 
hindering broader application in practice. 

This paper introduces an Interpretable Machine 
Learning approach aiming to reconcile advanced 
optimization with interpretability. Initially, DRL 
algorithms are deployed on a simulation model of an 
industrial energy supply system for control strategy 
optimization. Training and validation data sets of the DRL 
based control strategy are then used to train Decision 
Trees. Being intrinsically interpretable, Decision Trees 
enable representation of conditional logic and the 
extraction of rules for both local and global 
interpretability. Through optimization procedures such 
as depth limitation and input feature selection, the 
Decision Trees can either operate as controllers for 
energy supply systems directly or as tools to adapt the 
conventional rule-based control strategy. 

Tested successfully on a white-box model – the 
conventional rule-based control strategy for an industrial 
energy supply system – the proposed approach correctly 
identifies the underlying rules of the strategy. When 
applied on a black box model - the DRL based control 
strategy of the exemplary use case - in various 
experiments this paper showcases promising results as 
well as remaining challenges of the approach. 
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NOMENCLATURE 

Abbreviations  

 RL Reinforcement Learning  
 IESS Industrial Energy Supply Systems 
 DNN Deep Neural Network 
 OS Operational Strategies 
 DRL Deep Reinforcement Learning 
 AI Artificial Intelligence 
 XAI Explainable Artificial Intelligence 
 ML Machine Learning 
 IML Interpretable Machine Learning 
 DT Decision Tree 
 CHP Combined Heat and Power Unit 
 CCP Cost-Complexity Pruning 
 B Boiler 
 HP Heat pump 
 CT Cooling Tower 
 IH Immersion Heater 
 HS Hot Water Storage 
 CS Cold Water Storage 
 CC Compression Chiller 

 

1. INTRODUCTION 
In industry, energy carriers like heating and cooling 

water, electricity, gas, and compressed air are essential 
for factory processes such as powering production 
machines and regulating building temperature [1,2]. 
While some carriers like electricity and gas can be 
sourced directly from higher-level networks, others must 
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be provided from the factory's industrial energy supply 
systems (IESS), necessitating an operational strategy (OS) 
that needs to be reliable, cost-effective, and 
environmentally conscious [3,4]. In the context of 
increasingly volatile energy prices, a growing complexity 
of IESS and competing objectives, energy and cost 
savings can be achieved through an optimized OS [1]. 

For this, Deep Reinforcement Learning (DRL) 
methods are a promising alternative to conventional, 
rule-based OS. DRL methods have been applied in 
simulation-based IESS, showing reductions in energy 
consumption and greenhouse gas emissions [1,5,6]. 

Despite these promising results, there are few real-
world applications in which DRL methods apply the OS 
on real systems. We attribute this to their lack of 
interpretability, stemming from the deep neural 
networks involved, leading to missing trust and 
acceptance for the application in high stakes decision 
making in critical environments like supply engineering 
(compare section 2.4). To solve this problem the 
research field of Explainable Artificial Intelligence (XAI) 
deals with methods and techniques to make black-box 
models like DRL interpretable [7]. Thus, achieving 
interpretability can improve trust and transparency of AI-
based systems. 

Against this background, this paper presents an 
Interpretable Machine Learning (IML) approach aiming 
to make DRL based OS optimization of IESS interpretable. 
Following this introduction, section 2 presents the 
fundamentals of IESS and their conventional OS, 
Reinforcement Learning (RL), XAI, and Decision Trees 
(DT). Section 3 covers the overall method and its 
implementation. The use case and the application of the 
approach in different experiments are shown in section 
4 followed by their evaluation in Section 5. A conclusion 
and outlook are finally given in section 6. 

2. FUNDAMENTALS 

2.1 Industrial energy supply systems 

The IESS of a factory are all facilities required for 
conversion of final and environmental energy as well as 
the storage and transportation of the useful energy 
required for the operation of the production processes 
and the factory building [8].  

In different industries, IESS account for a significant 
portion of the end energy demand. While the production 
processes mostly rely on specialized equipment, IESS 
predominantly use cross-sectional technologies (e.g., 
heat pumps, refrigeration units, heat exchangers, cooling 
towers, combined heat and power plants, air 

compressors, ventilation systems) enabling OS 
optimization measures to be applied to a wide variety of 
industrial plants. [1] 

2.2 Conventional control strategies for IESS 

In light of their straightforward design and 
economical implementation expenses, conventional 
rule-based techniques, including two-point controllers 
and PID controllers, are predominantly employed for the 
regulation and automation of IESS [9].  

Two-point controllers, often known as on-off 
controllers, are the simplest form of feedback 
controllers. These controllers operate by switching the 
controlled device either fully on or fully off, based on the 
difference between the process variable and the set 
point. When the process variable deviates from the 
desired set point, the controller responds by toggling the 
system's status, ensuring basic regulation without the 
fine-tuned adjustments of more intricate controllers.  

For complex IESS, however, it is challenging to 
identify optimal PID or two-point controller based OS 
due to a variety of challenges (such as multivalent energy 
forms, intricate facilities-environment interactions, 
stochastic disturbances, integrated energy storages, cost 
efficiency, environmental considerations, and supply 
security [1]) and also to translate the OS into 
programmable rules. This limits the performance of 
conventional control processes [9,10], signifying the 
need for more complex optimization approaches like 
Reinforcement Learning (RL). 

2.3 Reinforcement Learning 

RL is a machine learning paradigm with the primary 
goal to map system states St to actions At in order to 
maximize a scalar reward signal Rt over the long term. 
This is achieved using an iterative trial-and-error 
approach. Within the RL framework, the entity 
responsible for decision-making is denoted as the agent, 
and the system with which this agent engages is referred 
to as the environment (compare Fig. 2). [11] 

DRL is an extended form of reinforcement learning in 
which the value of a state, the policy or the system model 
is approximated by a deep neural network (DNN). [1] 

For a more detailed introduction to RL and DNN we 
refer to [11] and [12] respectively. 

2.4 XAI 

According to the Defense Advanced Research 
Projects Agency’s (DARPA) the goal of the research field 
of Explainable AI is to ”produce more explainable 
models, while maintaining a high level of learning 



3 

performance (prediction accuracy); and enable human 
users to understand, appropriately trust, and effectively 
manage the emerging generation of artificially intelligent 
partners” [13]. Being able to explain their rationale and 
to point out their strengths and weaknesses new 
machine-learning systems will also have the ability to 
give its human end users an understanding of its future 
behavior. To achieve this goal, DARPA’s strategy is to 
combine modified or totally new developed machine 
learning techniques into models with both high accuracy 
and interpretability. [13] For one of the main reasons and 
at the same time the biggest challenge in producing 
interpretable models is the trade-off between 
interpretability and accuracy in current machine learning 
models [14]. Simple machine learning models like Linear 
Regression or DTs and their decision-making process 
have a high interpretability. This is why they are called 
white-box models. Compared to Deep Neural Networks 
or Support Vector Machines, they tend to show low 
accuracy. On the other hand, the black-box models have 
little to no interpretability at all.  

Based on Adadi et al. [7] existing XAI methods are 
classified into three groups according to the complexity 
of a machine learning model to be explained, the scope 
of interpretability, and the methods dependency on the 
machine learning model. 

The complexity of a machine learning model decides 
on whether the model itself is intrinsically interpretable 
or if methods are necessary to explain it after training 
and decision making in a post-hoc manner. Intrinsically 
interpretable machine learning models use simple 
structures and algorithms and thus are directly 
interpretable. Therefore, these models are also referred 
to as transparent or white-box models. [15] Typical 
examples of intrinsically interpretable machine learning 
models are linear regression or DT models. Post-hoc XAI 
methods are used to explain complex black box machine 
learning models which are not directly interpretable. 
These methods are applied to the machine learning 
models as separate sets of techniques after model 
training and decision making and provide their 
explanations without knowing the mechanism or the 
inner workings of the model. In comparison to 
intrinsically interpretable models the goal of post-hoc 
methods is to extract information from the trained 
model. Most of the recent works done on XAI belong to 
post-hoc methods. 

Based on the scope of interpretability XAI methods 
are separated into whether the goal is to explain and 
understand the behavior of an entire model, globally, or 

just a single specific prediction, also referred to as an 
instance, locally. 

Model specific XAI methods are limited to the 
application on specific machine learning models only. 
Model agnostic methods in contrast can be applied on 
any type of machine learning model.  

Furthermore, XAI methods can be classified by their 
underlying techniques and results i.e., visualization, 
knowledge extraction, influence methods and example-
based methods. The results of visualization methods are 
readable and comprehensible by visualization. The goal 
of knowledge extraction methods is to extract the 
knowledge learned by the black box model during 
training and to explain it in a comprehensible way. The 
approach proposed in this paper is combining the 
techniques of visualization and knowledge extraction. 

Although Explainable is the key word in the term XAI 
it is rather used as a general umbrella term most notably 
in public settings. In scientific environments and 
especially in the machine learning community the term 
interpretable is more common. In this work the terms 
interpretability and explainability are used 
interchangeably. 

2.5 Decision Trees 

DTs are a non-parametric supervised machine 
learning method that is used for classification and 
regression problems. The goal of a DT is a model that 
makes its predictions by learning decision rules or 
conditions from the features of a data set. This goal is 
reached by a piece wise constant approximation, that 
splits the feature space into different subsets for 
multiple times according to specific cut off values 
inferred from the features. This leads to each instance of 
the data set belonging to one subset. In a visualized 
recursive binary DT, the final subsets are called leaf 
nodes. The intermediate subsets which are further split 
into a left branch for satisfying the splitting condition of 
that node or into a right branch, likewise, are called split 
nodes. There are various algorithms to create Decision 
Trees. One of the most popular is the Classification And 
Regression Trees (CART) algorithm. CART creates binary 
DTs with the features and cut off values yielding the 
highest gain of information at each node. [16–18]. The 
DTs in the proposed approach are trained for 
classification using the Gini index as measure of impurity. 
The goal is to find the split that makes the nodes 
maximally pure, meaning to minimize the number of 
different classes in a node by selecting the split that 
minimizes the impurity. The reason for choosing DTs in 
the proposed approach is the high interpretability since 
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DTs are intrinsically interpretable. The empirical study of 
[19] found DTs to be one of the two most interpretable 
machine learning models. Visualizations of binary DTs 
are often used for the highly interpretable 
representation of conditional logic. Furthermore, DTs 
enable the extraction of decision rules. 

3. METHOD AND IMPLEMENTATION 

3.1 Methodical procedure 

The goal of the proposed IML approach is to 
reconcile advanced optimization of IESS with 
interpretability. In a post-hoc manner DTs, as intrinsically 
interpretable machine learning models, are used to 
represent and visualize the OS of the controller to be 
explained, enabling both global and local interpretability. 
Furthermore, being totally independent of the 
controller’s model this approach is model agnostic, 
relying only on the model’s output data and is based on 
five main steps (compare Fig. 1).  
(1) Initially, optimization algorithms are deployed on a 

simulation model of an IESS for OS optimization. The 
used optimization framework is introduced in 
section 3.3.  

(2) After training and testing of the optimized strategy, 
the input and output data of the controller to be 
explained is used to train DTs in a second step. The 
DTs in the proposed approach are built with the 
DecisionTreeClassifier package from the open 
source tool kit scikit-learn [20] for machine learning 
applications in the programming language Python. 
The output data contains (a) the states St of the 
environment for each timestep, also called 
observation, including all input features, and (b) the 
resulting action At, including the control signal for 
each element of the IESS as the environment. The 
aim of training the DTs on the observations and 
actions of the controller to be explained is to 
identify the rules of the optimized OS and to 
represent and visualize the controller’s decision 

policy in binary DTs for higher interpretability. 
Depending on the controller’s objective, included in 
the rewards Rt, the common method of evaluating 
and optimizing the trained DTs solely based on their 
accuracy is not sufficient as explained in detail in 
section 3.2.  

(3) Therefore, in the third step the trained DTs must be 
implemented as a controller into the optimization 
framework and simulate the same scenario as the 
controller to be explained in step (1). This enables 
considering the controller’s objective for evaluation 
as well.  

(4) Step four is the optimization of the DTs and is 
represented by a loop between steps (2) and (3). 
The main optimization procedures and approaches 
contain training of several DTs on different subsets 
of data, depth limitation, i.e., limiting the longest 
path from a root to a leaf, and feature selection. The 
evaluation of the DTs is based on the output data of 
the simulated scenario, containing the 
observations, actions, and rewards of the 
implemented DT-controller. 

(5) The loop is repeated until a DT is found that 
represents the optimized OS effectively and can 
potentially replace the controller to be explained. If 
the DT is not too complex and allows the extraction 
of rules, these can be used to adapt the 
conventional OS. In any of these two cases, 
represented by the final step, the decision process 
of the controller is interpretable at any time. 

 
As this approach is model agnostic, it is applicable to 

any controller model. This paper demonstrates the 
application of the approach on a conventional and DRL-
based controller (compare sections 4.3 and 4.4). As a 
white-box model the conventional controller allows for 
simple comparison of its rules with the identified rules of 
the DTs. Therefore, it serves the purpose of validating the 
proposed approach prior to its application on the DRL-

 
Fig. 1. Methodical procedure of the proposed IML approach 
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based controller and enhances the credibility of the 
obtained results. 

3.2 DT optimization 

The evaluation of DTs commonly relies on their 
accuracy in the context of training as well as for test data 
sets. In the specific scenario of the proposed approach, 
however, accuracy does not serve as an indicator of 
whether the underlying OS of the controller to be 
explained has been correctly identified, but rather as a 
measure of how effectively a trained DT can replicate the 
same results for a test data set. Given the need to 
identify the underlying OS of the controller under 
examination, an additional evaluation metric is essential. 
In this context, the rewards, representing the objective 
of the controller, are applied as an additional measure 
for performance evaluation and for DT optimization 
consequently. The main objective is to evaluate the DTs 
after implementation as a controller (compare step (4) in 
Fig. 1). The goal is to determine whether the controller’s 
OS is correctly replicated over the same scenario, and 
whether the DTs achieve equivalent results with respect 
to the rewards, representing the controller’s objective, in 
comparison to its underlying strategy. We interpret 
fulfilling these criteria as a correct identification and 
mapping of the underlying strategy. For the conventional 
and DRL-based controller the rewards represent costs in 
dimensionless units, being minimized in the controller’s 
objective. 

3.3 Framework 

For the training and inference of the DRL-algorithms 
the energy optimization framework eta-utility [21] is 
utilized. It provides a standardized interface to research 
factory operations and uses the environment interface 
specified by the gym framework [22] and the agents 
provided by the Stable-Baselines3 [23] library, which 
provides state-of-the-art DRL-algorithms. Since eta-
utility also enables the use of non-DRL algorithms, it is 
utilized for both the inference of the trained DTs and 
implementation of the conventional controller. To train 
the DTs, output data from the conventional controller or 
the trained DRL-algorithm is used, but the DT training 
itself is done outside of the framework (see step (2) in 
Fig. 1). The IESS simulations are imported as Functional 
Mock-Up Units (FMUs) [24]. The overall functional 
diagram is depicted in Fig. 2. 

 
 

4. USE CASE AND EXPERIMENTS 

4.1 Use case 

The use case for the IML approach proposed in this 
paper is a state-of-the-art IESS for both heating and 
cooling. The heating grid consists of a Combined Heat 
and Power (CHP) unit and a Condensing Boiler (B) and is 
extended by an Immersion Heater (IH) and a Hot Water 
Storage (HS). The cooling supply consists of a Cooling 
Tower (CT), a Compression Chiller (CC) and a Cold Water 
Storage (CS). A Heat Pump (HP) links the heating and 
cooling grid. A schematic representation of the IESS is 
shown in Fig. 3. 

4.2 Data preparation 

The DTs for the approach are generated with the sci-
kit learn tool [16]. The DT are trained using the Gini 
index, with a deliberate exclusion of parameters that 
could introduce randomness into the algorithm. 
Parameters that might restrict the quantity of data 
points, nodes, or introduce feature weighting to the DT 
are similarly disregarded [25]. This approach is chosen to 
provide the highest level of unconstrained DT training, 

 
Fig. 2. Functional representation of the eta-utility framework 

and its components [6] 
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Fig. 3. Representation of the IEES chosen as the use case for 

the proposed IML approach (compare [5]) 
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ensuring the independent and unconstrained detection 
of the conventional OS by the DT. 

Initial experiments have shown the optimization 
effort of DTs through cost-complexity pruning (CCP) 
resulting in the inability of detecting switching 
operations within the OS. Consequently, CCP cannot be 
used as an optimization parameter leaving the variable 
maximum depth of the DTs as the only optimization 
parameter within the scikit-learn tool.  

The selection of features chosen for DT training can 
also affect the outcome. Omitting certain features 
essential to the underlying operating system may hinder 
or even enhance accurate identification of OS. Based on 
this, the following white-box experiments exclusively 
apply the same 10 features that are used for the 
conventional controller. Similarly, in the black-box 
experiments, the same 22 features used for the DRL-
based controller are utilized for DT training. 

For all experiments mentioned hereafter, the 
training data is derived from the application of the 
conventional or DRL-based controllers on the same 
training dataset (training year), representing data of a 
whole year with a time resolution of 3 minutes per 
observation. The tests are done on a different test 
dataset (test year).  

4.3 White-box experiments 

For validation of the proposed approach in a first 
experiment, DTs are trained on the output data of the 
conventional controller. The parameters for the DT 
training are set as previously described with no 
constraints on maximum depth. In all following 
experiments, two different DT variants are considered: 
a. DTtotal: One single DT accounts for the entirety of the 

IESS by including all the control rules for all heating 
and cooling units. 

b. DTelements: Each unit of the IESS is represented by its 
own DT, providing a total of six DTs. For 
implementation as a controller, all six DTs are 
combined, allowing the simulation to be executed 
with various DTs acting as one controller. 
 
Within this first series of tests, the underlying 

conventional operating system is compared to the two 
DT variants. While the conventional operating system 
incurs costs (equivalent to negative rewards) of 31,648 
units for a full year of training, both DT variants each 
generate costs of around 32,000 units. When applied to 
a test year, identical costs can also be achieved. The 
decision paths of the developed DT correspond to the 
rules of the conventional OS. 

The experiments on the white-box model reveal that 
the DTs can replicate the underlying OS in its application. 
This serves as a validation for the proposed IML 
approach. 

4.4 Black-box experiments 

Since the experiments with DTs for the conventional 
OS have shown promising results, the approach is 
analogously applied to the DRL-based controller as a 
black-box in the subsequent experiments. 
  
4.4.1 DTtotal and DTelements with depth limitation 

The first black-box experiment is carried out on a 
complete training year analogously to the white-box 
tests. The DRL controller is then compared to the two DT 
variants as controllers that are trained on the same 22 
features also provided to the DRL algorithm. Given the 
anticipated complexity of the DT, the depth of the DT is 
systematically adjusted and evaluated in this context. 

While the DRL algorithm results in costs of 25,322 
units throughout the training year, it is apparent upon 
closer examination that the costs of the DT are 
significantly higher and are also depending on the depth 
of the DT (compare Tab. 1). We find that considering two 
different DT depths (depth 10 and fully grown) is 
sufficient as it becomes evident that for both variants the 
total costs decrease as the DTs grow larger. The two DT 
variants limited to a depth of 10 result in nearly tenfold 
increased costs compared to the DRL controller during 
the training year. The two fully grown DTs reduce this 
significant increase to six times the DRL costs. At this 
stage, however, it also remains unclear which variant 
(DTtotal and DTelements) generates better results. 

 

 
The fully grown DTtotal has a depth of 39, while the 

DTelements range from 13 to 41. For the training year, the 
immersion heater has a depth of 0, indicating that it is 
not used in the training year. 

Following this series of experiments, it is not yet 
possible to assert that the DT method is capable of 
identifying the DRL operational strategy. Trials on the 
test year are therefore not yet meaningful at this point. 
However, initial conclusions can be drawn that may be 

Tab. 1. DRL controller and DRL output based DT controllers 
“DTtotal” and “DTelements” with di  erent tree depths 

 DRL DTtotal DTelements 

Depth: 10 
25,322 

222,590 264,538 

Fully grown 159,775 147,891 
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useful for future experiments. It is evident that the depth 
of the DT is highly relevant: larger trees seem to result in 
better performance. However, an increased depth of the 
DTs also leads to trade-offs in interpretability because 
there are more control rules to be extracted.  

Since using a full year of training data does not seem 
to provide sufficient results, we are refining the training 
to smaller sections of the year, based on the assumption 
that fully grown DTs based on smaller data sections (e.g., 
separate months) will produce significantly better 
results. 

 
4.4.2 DTtotal and DTelements for individual months 

The objective is for the DTs to capture a wide range 
of scenarios related to IESS use, including various factors 
such as off-seasons or prevailing weather conditions 
during a calendar year. However, as the previous 
experiment demonstrates, the method struggles 
replicating an entire training year for a complex DRL 
algorithm.  

Therefore, the scope of this experiment is extended 
to individual months within the training year for a 
distinct evaluation of the numerous individual scenarios. 
Hence, output data of separate months serve as basis for 
the DT training, while the same parameters and inputs as 
in the previous experiments are used, with no 
restrictions on maximum depth. 

The DRL controller generates costs of between 1,586 
and 2,502 units per month. The DTelements lead to costs 
between 1,966 and 4,610 units, while the DTtotal 
controllers generate costs of between 1,966 and 7,270 
units (compare rows on training year in Tab. 2). When 
calculating cumulative sums over the individual months, 
the annual costs of the DRL controller are 25,158 units, 
whereas DTelements results in costs of 31,966, and DTtotal 
amounts to 58,882. Throughout the year, different 
depths are observed for DTtotal and DTelements. While DTs 
are larger in the winter months (DTtotal with a depth of 39 
and DTelements between 8 and 34), their depth decreases 

in the summer (DTtotal with a depth of 25 and DTelements 
between 0 and 20). 

In six out of twelve months DTelements is successfully 
able to mimic completely identical costs from the DRL 
controller. In addition to the matching rewards, the 
control signal heat map (compare Fig. 4) of DRL and DT 
controllers displays identical patterns. Fig. 4 shows the 
heatmap of the DRL algorithm (top) and DTelements 
(bottom) for the month of March. The control signals of 
both controllers show identical trajectories. 
 

 
Fig. 4. Control signals during one test month with DRL 

controller and DT controller based on DRL output 

This experiment demonstrates the success of the 
method when applied to the training year: The pattern 
of control signals and the resulting costs fully match 
those of the DRL-based controllers for individual months.  

 
When the DTs are applied as controllers for the test 

year, however (compare rows on test year in Tab. 2), it 
becomes apparent that neither DTelements nor DTtotal can 
approximate the costs of the DRL controller. In addition, 
the cumulative sums of the monthly costs show an 
increase in the annual costs compared to the application 
over a full year (compare Tab. 1 row fully grown). 

Consequently, it cannot be assumed that the OS of 
the DRL controller is completely and accurately identified 
in the six months mentioned above. Moreover, the 
existing DT structures are very large, which significantly 
increases the complexity, compromising the 
interpretability of the DTs.  

CHP 
B 

IH 
HP 
CT 
CC 

CHP 
B 

IH 
HP 
CT 
CC 
01.03. 30.03. 

DT controller 

DRL controller 

0 % 

100 % 

Tab. 2. Costs of DTelements, DTtotal and DRL controller for individual months on a training and test year 

   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

On 
Training 
Year 

DRL 1,823 2,462 2,455 1,586 1,916 2,385 1,649 2,612 1,966 1,884 1,918 2,502 

DTelements 2,863 2,012 2,455 2,649 4,547 2,385 2,065 2,612 1,966 1,884 1,918 4,610 

DTtotal 7,270 3,776 5,651 3,826 2,908 3,404 9,748 2,982 1,966 4,202 6,606 6,542 

On 
Test 
Year 

DRL 8,377 2,557 1,761 1,869 2,068 2,430 2,080 2,400 1,828 1,542 2,188 2,029 

DTelements 26,838 11,018 19,626 27,274 13,573 8,885 15,274 29,783 11,099 21,644 18,992 15,006 

DTtotal 42,946 17,022 22,106 38,232 21,365 14,636 8,384 12,740 33,805 13,169 23,924 18,958 
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4.4.3 Feature selection 

These results suggest that prior knowledge of the 
quantity and importance of input features could be 
beneficial for DRL output-based DT training and thus 
their transferability to unknown processes needs.  

When adjusting the input features, we find that not 
only costs, but also the size of the DTs can be reduced, 
thereby enhancing interpretability. We thus infer that 
information concerning the importance of each feature 
within the entire IESS holds significant potential for the 
DT method and will investigate this effect in further 
work. 

5. EVALUATION 
We showed that DTs trained on the input and output 

data of the conventional OS (a white-box) in both the 
DTtotal and DTelements variant, achieve the same behavior 
compared to the conventional control strategy when 
applied as a controller for both, training and test year.  

Furthermore, the decision rules extracted from the 
DTs exactly correspond to the rules of the conventional 
OS. Moreover, visualization of the binary DTs makes the 
strategy and its rules highly interpretable, globally and 
locally. These results suggest that the presented 
approach is effective and that identifying operational 
strategies through output data-based training of DTs is 
feasible, at least when applied to relatively simple white-
box models.  

Regarding the DRL-based OS (a black-box), the 
results are more nuanced. When the DTs are applied as 
controllers on the test year, better performance (lower 
costs) can be observed with increasing depth of the DTs. 
Fully developed DTs without depth limitation achieve the 
lowest costs, but still do not match those of the DRL 
controller. When comparing DTtotal and DTelements with the 
same depth limit, the results are inconclusive, implying 
that depth limitation alone is insufficient for a 
performance assessment. However, when fully grown 
DTs of both variants are considered, DTelements achieve 
better results.  

Since splitting the data in terms of the IESS elements 
(one DT for each element), results in cost reduction and 
thus better approximation of the comparative value of 
the DRL strategy, we also split the training data in terms 
of its temporal dimension into individual months. 

For DTtotal this corresponds to an ensemble of 12 DTs 
in total, and 72 DTs for DTelements. In the training scenario, 
DTelements match the results of the DRL controller precisely 
in 6 out of 12 months. Notably, this occurs during a 
continuous block of 4 months spanning from August to 
November. In February, DTelements even incurs lower costs 

than the DRL controller. The following five months see an 
inconsistent deviation, with July showing the lowest and 
December exhibiting the highest deviation. In each 
month, DTelements produce significantly better outcomes 
than DTtotal. Except for September, where the same value 
is achieved as for DRL and DTelements, and May, where 
DTtotal is better than DTelements but still significantly worse 
than DRL. Applied to the test year, no outcome 
approaches the performance of the DRL algorithm, but 
DTelements outperforms DTtotal in all months except July, 
August, and October.  

We attribute these large deviations of the test year 
compared to the training year to overfitting. Despite this, 
the rules seem to be accurately reproduced by DTelements 
for at least 6 months and thus enable the interpretability 
of the DRL-based strategy. The variances observed across 
various months are indicative of seasonal dependencies, 
in which individual features have different influences. 
Early experiments (compare 4.4.3) indicate that 
modifying the feature selection significantly impacts the 
outcome of the DTs. 

6. CONCLUSION AND OUTLOOK 
This paper presents an interpretable machine 

learning approach for reinforcement learning based 
control strategy optimization of industrial energy supply 
systems. Therefore, DTs are trained on the input and 
output data of the DRL-based controller to find the rules 
of the optimized control strategy and to represent the 
algorithms’ decision policy by visualizing it in binary D s 
for higher interpretability.  

Implementing the trained DTs as controllers for the 
same scenario as the DRL-algorithm enables evaluation 
of the identified strategy for further optimization. The 
approach was successfully demonstrated on the 
conventional control strategy of a state-of-the-art IESS 
consisting of a heating and cooling grid, with the trained 
DTs leading to the same results as the conventional OS 
for both train and test year. Applied on the DRL-based 
controller, neither a single DT trained on the whole 
dataset, nor separate DTs for each unit of the IESS were 
able to represent the control strategy in its entirety, 
although the latter achieved the highest similarities.  

When training individual DTs for all IESS elements for 
individual months, the DTs were shown to replicate the 
performance of the DRL-based control strategy for 6 out 
of 12 months on the training year. When applied on the 
test year, however, the results did not approach those of 
the DRL algorithm. 

In future research, further investigation will be 
conducted into the influence and the importance of 
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individual input features since minor modifications to the 
feature selection have already shown significant impacts. 
An example of the practical applications of this could be 
the SHAP XAI method [26]. Furthermore, the presented 
approach should be extended to other DT methods, such 
as random forests or extreme gradient boosting, which 
are generally more data efficient yet still interpretable. 
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