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ABSTRACT 
  Energy flexibility measures play a crucial role in 

the achievement of carbon neutrality. Renewable energy 
sources can only be prioritized if energy demand can 
adapt to the supply. For the targeted use of such 
measures, a better understanding of the energy markets 
and the affected systems is essential. 

The availability of sustainable energy sources is 
highly dependent on fluctuating environmental 
conditions like solar radiation or wind speed. Combined 
with changing energy demand, this leads to volatility in 
energy prices and carbon intensity. To react to these 
fluctuations at an early stage, trends in electricity prices 
and carbon intensities are urgently needed in addition to 
weather forecasts, which are already available across the 
board. This gap shall be addressed by this publication, 
which presents a machine learning based tool to forecast 
electricity prices and carbon intensities beyond the 
German day-ahead market for the following 48 hours. 
Publicly available market data from the past five years 
was used to train the machine learning model, which 
achieved a mean absolute error (MAE) of 20.6 €/MWh 
for day-ahead energy prices during the first half of 2023. 
The tool forecasts carbon intensities with a MAE of 
47.7 gCO2eq/kWh for the same period. The presented 
forecasting tool enables planning of energy-flexible 
operating strategies at an early stage and their 
implementation at industrial sites. 

An air conditioning system as an exemplary industrial 
use case is used to demonstrate the relevance of the 
presented forecasting model in the context of energy 
flexibility. The utilization of the forecasting tool and the 
development of energy-flexible operating strategies 
resulted in potential savings of 12.33 % in operating costs 
and 9.94 % in carbon emissions. 
 

Keywords: forecasting models, energy trends, energy 
flexibility, carbon intensity, climate neutrality 
 

NOMENCLATURE 

Abbreviations  

 EFM Energy Flexibility Measure 

 EFOS 
Energy-Flexible Operating 
Strategy 

 LEAR Lasso Estimated Autoregressive 
 LSTM Long-Short Term Memory 
 MAE Mean Absolute Error 
 RES Renewable Energy Sources 
 TES Thermal Energy Storage 
 XGBoost Extreme Gradient Boosting 

Symbols  

 𝑃𝑅(𝑡) Day-Ahead Prices (Germany) 

 𝐶𝐼(𝑡) 
Forecast of the Carbon 
Intensity 

 ∆𝑡 Loading Interval of TES 

 𝑄̇(𝑡) Cooling Demand 
 𝑆𝑂𝐶(𝑡) State of Charge of the TES 
 𝐶(𝑡) Costs 
 𝐸𝐸𝑅(𝑡) Energy Efficiency Coefficient 
Indices  
 𝑚𝑎𝑟𝑘𝑒𝑡 German Energy Market 
 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 Predicted Data 
 𝑙𝑜𝑎𝑑 Loading Phase of TES 
 𝑢𝑛𝑙𝑜𝑎𝑑 Unloading Phase of TES 
 𝑟𝑒𝑓 Reference Scenario 
 𝑓𝑙𝑒𝑥 Energy-Flexible Scenario 
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1. INTRODUCTION 
In recent years, and especially during the 2022 

energy crisis, energy prices have increased significantly. 
In Europe, charges to industry (annual consumption: 
2,000 MWh to 20,000 MWh) for electric power doubled 
on average from 2008 to 2022, ranging from + 34 % in 
Malta to + 268 % in Greece [2]. 

When taxes are taken into account, the changes in 
electricity prices are even greater, as illustrated by a 
market analysis showing the wholesale prices of the 
German electricity mix in Fig. 1a. In this context, average 
prices have risen from 44.5 €/MWh (2018) to 
235.5 €/MWh (2022). This corresponds to an increase of 
429 %. Looking at the frequency distribution, the 
increase in the hourly spread is particularly striking 
increasing from a standard deviation of 17.8 €/MWh 
(2018) by + 702 % to 142.8 €/MWh (2022). 

One factor contributing to increasing volatility in the 
electricity market is the rising proportion of renewable 
energy sources (RES) [3]. These sources are directly 
dependent on highly fluctuating weather conditions. 
Furthermore, the fluctuating prices of conventional 
power generation resources and the general bidding 
tactics employed by market participants in the spot 

market are additional factors driving the increase in 
volatility [4]. The high volatility of RES can also be 
observed by the significant spread of carbon intensities 
in Fig. 1b. Unlike the behavior of electricity prices, the 
frequency distribution of carbon intensities has 
remained relatively constant between 2018 and 2022. 
The mean intensities have decreased by - 4.5 % from 
472.0 gCO2eq/kWh (2018) to 450.6 gCO2eq/kWh 
(2022). However, the standard deviation has increased 
by + 16.9 % from 104.7 gCO2eq/kWh (2018) to 
122.4 gCO2eq/kWh (2022). The decrease in average 
intensity coupled with an increase in spread implies an 
increase in the share of RES electricity generation in 
gross electricity consumption. According to [5], the share 
of RES in gross electricity consumption in Germany has 
risen from 38.7 % (2018) to 46.2 % (2022). 
 
What does this market behavior signify for energy 
consumers? 
 

Industrial consumers heavily rely on energy prices, as 
these, multiplied by the energy demand, constitute a 
substantial portion of the operating costs [6]. One 
approach to reduce these costs is through energy 
efficiency measures. However, they only address the 
increase in average electricity prices. To minimize price 
and emission peaks caused by high fluctuations, 
participants in the spot market must employ energy 
flexibility measures (EFM). 

VDI Guideline 5207 [7] recommends different EFM 
depending on the request time and mainly addresses the 
topics of intervening the process or storing energy. For 
this publication, we will focus on the second approach, 
assuming that companies do not want to modify their 
current processes initially, and thus, the energy demand 
is considered to be given. However, the purchase of an 
energy storage unit alone is insufficient. Instead, the 
complete energy supply system needs to be capable of 
energy-flexible operation. This applies in particular to the 
expansion of the system and control technology. 

The last step in implementing EFM involves defining 
Energy-Flexible Operating Strategies (EFOS). Specifically, 
for the category “store energy”, EFOS determines the 
timing for loading and unloading energy storage units. 
The decision of when to load and unload is based on 
criteria such as the target value, which could be the 
minimization of operating costs or the minimization of 
CO2 emissions associated with energy provision, and the 
corresponding cost function. When prices for electricity 
or carbon intensities are low, it is advisable to load 

Day-Ahead Prices

in €/MWh

Carbon Intensity

in gCO2eq/kWh

Mean Min Max Std Mean Min Max Std

2018 44.5 -76.0 128.3 17.8 472.0 170.3 731.4 104.7

∆↓ -15.3 % 18.4 % -5.3 % -12.7 % -15.1 % -14.1 % -13.7 % 5.2 %

2019 37.7 -90.0 121.5 15.5 400.8 146.4 631.1 110.2

∆↓ -19.1 % -6.7 % 64.7 % 12.8 % -6.8 % -18.8 % 1.5 % 7.6 %

2020 30.5 -83.9 200.0 17.5 373.4 118.9 640.5 118.5

∆↓ 217.8 % -17.8 % 209.9 % 321.0 % 13.0 % 3.8 % 2.2 % -4.2 %

2021 96.8 -69.0 620.0 73.7 421.9 123.5 654.9 113.6

∆↓ 143.1 % -72.4 % 40.5 % 93.8 % 6.8 % 28.4 % 4.5 % 7.8 %

2022 235.4 -19.0 871.0 142.8 450.6 158.6 684.3 122.4

FREQUENCY DISTRIBUTION OF

DAY-AHEAD PRICES AND CARBON INTENSITY

a) b)

Fig. 1. Results of a data analysis of German electricity market 
data (a) and carbon intensity (b) for the years 2018 to 2022. 

Based on data from [1]. 
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storage units; however, when costs are high, it is 
generally best to unload them. 
Why is a forecast necessary to identify loading intervals? 

 
While it may be contended that current values in 

combination with recent values would be adequate to 
make a decision, this presumes that the systems are 
constantly operational and that there is enough power 
to charge the energy storage units. In reality, however, 
the systems are usually inert, or the actual systems 
temporarily require so much power that efficient loading 
is not possible. In addition, many large consumers obtain 
their prices directly from the spot market and have to 
submit their bids the day before. Consequently, it is 
mandatory to identify a trend for prices and emissions at 
an early stage and to develop matching EFOS. 

This publication therefore introduces a forecasting 
tool specifically designed for industrial users and EFOS 
developers to address this challenge. The program 
operates on Python and loads necessary input data from 
selected APIs via the internet. The machine learning 
model employed in this program is trained with data 
obtained from the German energy market, but it could 
theoretically be applied to other countries as well (as 
long as the input data are publicly available). 

Following an overview of the essential modelling 
basics, the third section of this publication details the 
method and tool structure. Finally, after validation, an 
exemplary use case is presented to demonstrate the use 
of the tool for the creation of EFOS. 

2. FUNDAMENTALS 

2.1 Existing approaches 

Electricity price forecasting has become a key area of 
research in the energy sector. During the last decades 
thousands of papers on energy forecasting have been 
published making the progress in this field not easy to 
follow. [8, 9] This section gives a brief overview on the 
most common methods as well as those considered 
state-of-the-art.  

Typically, the literature on energy price forecasting is 
grouped into five areas: multi agent models simulating 
the operation of interacting market agents, fundamental 
methods considering physical and economic factors, 
reduced-form models characterizing statistical properties 
of energy trade, statistical models comprising statistical 
techniques and econometric models, and machine 
learning methods being able to adapt to complex 
dynamic systems. Approaches combining techniques of 

two or more groups from this classification are so called 
hybrid methods. For forecasting day-ahead prices 
statistical models and machine learning methods have 
shown to give the best results. [10] 

Common statistical methods are: autoregressive 
(AR) and autoregressive with exogenous inputs (ARX) 
models  [11], threshold ARX (TARX) models [12], 
autoregressive integrated moving average (ARIMA) 
models [13, 14], double seasonal Holt-Winter (DSHW) 
models [15], semi/nonparametric models [11, 16], 
dynamic regression (DR) and transfer function (TF) 
models [17] or generalized autoregressive conditional 
heteroscedasticity (GARCH) based models [18–20]. 
Common hybrid versions of these models are wavelet-
based models [14, 21, 22]. [23] 

Usually, statistical models are linear forecasters 
being able to handle data with a low frequency e. g. 
weekly patterns, with success [23]. Another advantage of 
these models is their interpretability. Being criticized for 
their limited ability of modelling nonlinear behavior of 
electricity prices, in practical applications their 
performance is alike to non-linear alternatives [10]. The 
Lasso Estimated Autoregressive (LEAR) model [24] is 
considered as state-of-the-art among statistical methods 
and is argued to be the most accurate linear model by 
[9]. LEAR is a parameter-rich ARX structure with a fully 
automated feature selection procedure. The optimal set 
of features is selected using LASSO [25], based on L1-
regularization.  

To cover the need for forecasters being able to 
predict the nonlinear behavior of hourly prices, which 
might be too complicated to predict for many statistical 
models, machine learning methods have been proposed. 
The most commonly used ones are artificial neural 
networks [26–30], radial basis function networks [30], 
support vector regressors [31], and fuzzy networks [32]. 
Especially Deep Learning methods are characterized by 
the most rapid development together with hybrid 
methods [9]. In the study of [23] four Deep Learning 
models are proposed (a deep neural network model, a 
long-short term memory (LSTM) model, a gated 
recurrent unit model and a convolutional neural network 
model) and compared against a total of 23 different 
models, including 15 statistical methods, 7 machine 
learning models and a commercial software using a 
whole year of data for the day-ahead market in Belgium. 
The results of the study show that the deep neural 
network, LSTM, and gated recurrent unit models are 
statistically significantly better than all the considered 
models. The deep neural network model in particular 
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outperforms any of the compared models. The 
automated and relatively simple Deep Learning method 
with two hidden layers using Bayesian optimization for 
hyperparameter and feature optimization, is therefore 
considered the second state-of-the-art model for energy 
price forecasting by [9]. [23] also shows a clear division 
between statistical and machine learning methods. 
Except for the LEAR model the machine learning models 
perform statistically significantly better than the 
statistical methods. Regarding hybrid models according 
to [9] it is impossible to find out which model is the best. 
This is because most of the hybrid methods have not 
been compared to each other nor to the state-of-the-art 
methods. In addition, the individual effect of each hybrid 
component is not analyzed. 

In contrast to the rapid development and research 
activities in the field of energy price forecasting there are 
only few works found in the literature discussing short-
term forecasting of CO2 intensities. Since short-term CO2 
intensity forecasting on an hourly basis generally faces 
the same requirements and challenges as energy price 
forecasting as a consequence the same methods and 
models can be applied for both problems.  

A common issue especially of models for energy 
price forecasting in the literature is the use of unique 
datasets with limited access for other researchers. In 
addition, many new methods are not compared with 
well-established or state-of-the-art models. This makes 
comparisons and analyses very complicated, if possible 
at all. [8, 9] Regarding the energy crisis of 2022 with 
significantly higher energy prices and volatility of 
renewable energy sources these issues are reinforced 
and could even challenge the current state-of-the-art 
models. 

2.2 Extreme Gradient Boosting 

The model for energy price and CO2 intensity 
forecasting used in the proposed tool in this paper is XGB 
using the XGBoost library [33]. XGBoost stands for 
Extreme Gradient Boosting and is a scalable machine 
learning system for gradient tree boosting [34], also 
known as gradient boosting machine or gradient boosted 
regression tree. XGBoost is used for supervised learning. 
While the most frequent approach is to build only one 
single strong predictive model XGBoost follows the 
ensemble approach. It combines a large number of 
relatively weak and simple models, i. e. decision tree 
ensembles consisting of a set of classification and 
regression trees (CART), to achieve a stronger ensemble 
prediction. [35, 36] Other than most examples for 

ensemble techniques like random forests, which rely on 
simply averaging the models in the ensemble, boosting 
methods are based on a different strategy. The new 
weak decision trees are added to the ensemble 
sequentially at each particular iteration considering the 
error of the whole ensemble learnt so far by minimizing 
the error of the previous tree. The goal is to build new 
decision trees with a maximal correlation with the 
negative gradient of the loss function of the whole tree. 
[36] A regularized learning objective that penalizes the 
complexity of each decision tree tends to add simple and 
predictive decision trees. Together with the technique of 
shrinkage which reduces the influence of individual 
decision trees with smooth final learned weights and the 
technique of column subsampling this prevents 
overfitting. [33] Unlike artificial neural networks such as 
the LSTM, which is also well suited to predicting time 
series, there is no need to normalize the data before 
training. Coupled with efficient parallelization, XGBoost 
delivers excellent results at low implementation cost, 
making its scalability one of the most important factors 
behind its success. [33, 37] 

3. METHOD AND IMPLEMENTATION 

3.1 CRISP-DM 

CRISP-DM (Cross-Industry Standard Process for Data 
Mining) is a proven and widely used project management 
model for data mining. Designed to provide a structured 

BUSINES 

UNDERSTANDING

DATA 

UNDERSTANDING

EVALUATION

DEPLOYMENT

DATA 

PREPARATION

MODELING
DATA

Fig. 2. Phases of the CRISP-DM Process Model for Data 
Mining. Based on [8] 
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and repeatable approach to data mining projects, it 
consists of six main phases that are followed 
sequentially, but also allow for iterative feedback 
between phases. CRISP-DM helped us to manage the 
complexity of the issue and ensured the success of the 
project through a structured approach. 

The first phase of CRSIP-DM [38] (see Fig. 2) is the 
BUSINESS UNDERSTANDING, where the project goals and 
requirements are discussed and translated into a data 
mining problem. One of the main problems is the 
increasing volatility in exchange-based electricity price 
trading in recent years, which made it necessary to 
search for a way to use publicly available data to create 
an AI model that was superior to traditional methods. 
The second phase is DATA UNDERSTANDING and 
includes the initial data acquisition, actions to become 
familiar with the data, identify data quality issues and 
gain initial insights into the data. In this phase, we took a 
closer look at freely available data from the European 
Network of Transmission System Operators for 
Electricity (ENTSO-E) [39] and statistically evaluated 
trends over the last few years. In addition, the graphical 
presentation of the data has provided a better 
understanding of the complex interdependencies within 
electricity price trading. BUSINESS and DATA 
UNDERSTANDING are two phases that are closely linked 
and should be seen as an iterative process. The next 
Phase of the process is the DATA PREPARATION. It covers 
all actions to construct the final dataset from the 
previous raw data. Here we looked for a suitable method 
to transform the raw data into relevant features. In the 
fourth step, the phase of MODELING, various modeling 
techniques are chosen to optimize the parameters of the 
model. 

In this phase, we looked at different machine 
learning approaches and evaluated their advantages and 
disadvantages in relation to the problem. We decided to 
use a gradient boosting approach due to its superior 
performance, ease of implementation and moderate 
training effort. Like the first two steps, Data Preparation 
and Modeling depend on each other and form an 
iterative process. The second last stage is the 
EVALUATION of the computed models to select the 
model which is best suited to the business objectives. 
Here, the model underwent assessment through cross-
validation, while a practical example was used to 
evaluate the price and CO2 savings. It is often necessary 
to organize and present the acquired knowledge in a way 
that makes it accessible to the user. This is the purpose 
of the DEPLOYMENT phase of CRISP-DM. The 

requirements can range from writing a report to 
implementing the model into an existing process. 
Therefore, we have developed a tool that uses the 
trained model to calculate daily forecasts. [40] 

 

3.2 Tool structure 

The chosen model for forecasting energy prices and 
carbon intensities is XGBoost [33]. We trained our 
XGBoost model using only publicly available data from 
the ENTSO-E Transparency Platform. This platform 
provides a centralized hub for real-time and historical 
information related to electricity transmission across 
Europe. By using the ENTSO-E API, we can access a wide 
range of data, enabling them to perform comprehensive 
analyses, gain insights into the European energy market 
and build forecasting models. 

As raw data we use the day-ahead price, the load 
forecast and the renewable energy forecast over a 
period from 2020 to 2023. Both forecasts are based on 
data such as weather models and historical energy 
production and consumption data. These forecasts play 
an important role in price formation by helping market 
participants to adjust their offers and avoid congestion. 
The 2023 data is used as a test dataset to evaluate the 
model. 

DATA ACQUISITION

Get Electricity Market Data 

from ENTSO-E

CO2 CALCULATION

Calculate CO2 Intensities

with Market Data 

MODEL TRAINING

FEATURES & TARGETS

Derive Lag Features from

Raw Data

DATA PREPARATION

Determine Training Period

and Prepare Trainings Data

MODEL TRAINING

Train XGBoost Model

METRICS

Calculate Metrics for Model 

Comparison

DATA ACQUISITION

Get Electricity Market Data 

from ENTSO-E

CO2 CALCULATION

Calculate CO2 Intensities

with Market Data 

MODEL EXECUTION

FEATURES & TARGETS

Derive Lag Features from

Raw Data

LOAD MODEL

Load XGBoost Model

FORECAST

Make Prediction and Export 

Forecast for Further Usage

Hyperparameter 

Tuning

Cross-Validation

Fig. 3. Schematic illustration of the individual steps for model 
training and for model execution of the forecasting tool 



 

6 

The model is not trained on the raw data, but on lag 
features (meaning values of previous time steps in the 
time series), which are well suited for time series 
characteristics. In [9], a paper on best practices in energy 
price forecasting, Lago et al. describe a dataset of lag 
features that is also used in this project. Accordingly, we 
consider the historical day-ahead price of the previous 
three days and one week ago. The historical load and 
renewable energy forecasts are then lagged for the 
previous day and one week ago. In addition, the day of 
the week is added as an input feature. In total we get 241 
features per day. 

The target for the energy price forecasting model is 
the next 24 hours of price data after the day-ahead price. 
For the Carbon intensity forecasting model, we need to 
forecast the next 48 hours. The carbon intensity forecast 
is calculated with historical data of the actual generation 
per production type and its corresponding CO2 emission 
factors for each production type. The CO2 emission 
factors are provided by the open-source visualization of 
Electricity Maps [41]. 

A random grid search is used to optimize the number 
of estimators and the maximum depth of each decision 
tree. For cross-validation purposes, the training data is 
split into five parts with a time series split and twenty 
iterations are calculated for each split to find the best 

hyperparameters. The models are then saved, to use 
them later in the forecasting tool. A flow chart of the 
training process and execution of the forecasting tool are 
shown in Fig. 3. 

The tool is structured in four steps. First, we load the 
latest energy data and generate our feature set. Since 
both models use the same feature set, this step only 
needs to be performed once. Second, we load the energy 
price and carbon intensity model. Next, we predict the 
energy price and the carbon intensity. The predicted 
energy price is then combined with the already available 
day-ahead price to obtain 48 hours of price information. 
Finally, the data is plotted and stored for later analysis. 

4. EVALUATION AND INDUSTRIAL USE CASE 

4.1 Validation 

The forecasting model presented in Section 3.2 will 
be applied over an extended period in this section and 
evaluated for its predictive accuracy. To achieve this, the 
model is incrementally fed with historical data from the 
first half of 2023. In this simulation, similar to its real-
world application, the model can only access data for the 
next day, obtained via the API, and data from recent past 
days. Using the XGBoost model, it computes the forecast 
for the subsequent two days. For electricity prices, only 

THREE BEST WEEKS OF DAY-AHEAD PRICE FORECAST THREE WORST WEEKS OF DAY-AHEAD PRICE FORECAST

Fig. 4. Illustration of the electricity price forecast from the three best and from the three worst predicted weeks of the first half of 
2023. The forecast data are compared with the respective market data. 
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the day after the next is predicted, as the next day's 
values are already provided by the Day-Ahead prices. The 
results of both the Day-Ahead electricity price forecast 
𝑃𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  and Carbon intensity predictions 𝐶𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 

are compared against the actual market data 𝑃𝑟𝑚𝑎𝑟𝑘𝑒𝑡 
and 𝐶𝐼𝑚𝑎𝑟𝑘𝑒𝑡. The MAE (Mean Absolute Error) is then 
calculated. Over the six-month period under review, the 
average MAE is 20.6 €/MWh for 𝑃𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  and 

47.7 gCO2eq/kWh for the first day and 
92.0 gCO2eq/kWh for the second day of 𝐶𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 

To illustrate the temporal trends of market data and 
forecasted data, Fig. 4 displays the three weeks from the 
first half of 2023 that exhibited the highest alignment 
with the market data (lowest MAE) and the three weeks 
with the highest average deviations (highest MAE). 
Examining the three best weeks, the forecast closely 
matches the market data. Minor deviations only occur 
for outliers or significant deviations from the generally 
cyclical market behavior, with MAEs ranging from 11.1 
€/MWh to 14.6 €/MWh. 

 
For the three worst weeks, deviations are noticeably 

higher, with MAEs between 28.2 €/MWh and 33.3 
€/MWh. However, when developing EFOS, not only are 
the amplitudes crucial, but the temporal overlay of local 
extremes is also vital. Ideally, the minima of the 

predicted data should align with the market data minima 
and vice versa for the maxima. In the worst-case 
scenario, the forecasted minima coincide with the 
market maxima, or the forecasted maxima match the 
market minima. In such cases, subsequent EFM would 
exacerbate volatile costs, rendering them 
counterproductive. As Fig. 4 indicates, even during the 
three worst weeks, the local extremes still align well, 
suggesting potential savings if EFM are correctly applied. 

An analysis of the price extremes over the entire 
observation window for various tolerances yielded the 
following percentage overlaps for respective extremes: 

 

• Without any tolerance: 39.4 % 

• With ±1 hour tolerance: 78.4 % 

• With ±2 hour tolerance: 87.2 % 

• With ±3 hour tolerance: 92.0 % 
 
In practice, depending on the inertia of the system 

under consideration, different tolerances become 
relevant. For the thermal energy systems discussed in 
this study, tolerances of ±2 hours are sufficiently 
accurate. The electricity price forecasts provided by the 
forecasting model thus offer a beneficial foundation for 
subsequent optimization models, with both amplitude 

THREE BEST WEEKS OF CARBON INTENSITY FORECAST THREE WORST WEEKS OF CARBON INTENSITY FORECAST

Fig. 5. Illustration of the carbon intensity forecast from the three best and from the three worst predicted weeks of the first half of 
2023. The forecast data are compared with the respective market data. 
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and temporal occurrence of extreme values aligning 
closely. 

Fig. 5, analogous to the results of 𝑃𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 , 

displays the three best and worst weeks of 𝐶𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. 

However, in contrast to Fig. 4, two forecasts are plotted: 
one for 𝑡 +  24ℎ  and another for 𝑡 +  48ℎ . The 
arrangement of weeks in Fig. 5 is based on the 𝑀𝐴𝐸24 
results. Concerning the average carbon intensities, the 
prediction model achieves great results, with 𝑀𝐴𝐸24 
ranging from 29.8 gCO2eq/kWh to 84.0 gCO2eq/kWh. For 
the 𝑡 +  48ℎ  forecast, values range between 
79.4 gCO2eq/kWh to 133.3 gCO2eq/kWh. Even here, the 
impact of occasional higher amplitude errors on 
subsequent optimization processes is mitigated by the 
favorable temporal occurrences of the extreme values. 
These are as follows for the 𝐶𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡: 

 

• Without any tolerance: 
29.7 % (24h); 21.8 % (48h) 

• With ±1 hour tolerance: 
62.3 % (24h); 50.7 % (48h) 

• With ±2 hour tolerance: 
79.2 % (24h); 68.5 % (48h) 

• With ±3 hour tolerance: 
86.6 % (24h); 78.5 % (48h) 

 
Again, the primary relevant tolerances are up to ±2 

hours. Although the 48h forecast results remain 
sufficiently accurate for EFM decision-making, if 
possible, the more accurate 24h forecast values should 
be utilized. 

4.2 Exemplary Use Case 

This section illustrates the application of our 
forecasting model within an exemplary use case. The aim 
is to devise an EFOS, thereby reducing both the operating 
costs and CO2 emissions of the system under 
consideration. The system under consideration is a 
decentralized cooling supply system for an air handling 
unit (AHU), consisting of a compression chiller, a thermal 
energy storage (TES) and a heat exchanger connected to 
the primary heat source: the AHU. While the predictive 
model remains central to this discourse, we will avoid a 
deep dive into the granular technicalities of the cooling 
supply system or the simulation model. Detailed 
discussions of the component functionalities and the 
simulation model are available in the referenced 
literature [42]. 

As previously outlined, our overall objective is to 
synchronize the energy demand of the consumers (here 

the electrical power of the compression chiller) with 
temporally defined windows characterized by minimized 
electricity prices and/or carbon intensities, while 
maintaining the uninterrupted functionality of the 
system. Following the "energy storage" measure of [7], 
this requires the identification of promising intervals for 
both loading and unloading the TES. The forecasting 
model was used to predict daily electricity prices and 
carbon intensities for the following day throughout the 
first half of 2023. This forecast, combined with historical 
data from the previous day, was used to find profitable 
time windows for loading and unloading the TES. 

The trajectories of both market 𝑃𝑟𝑚𝑎𝑟𝑘𝑒𝑡  and 
forecast 𝑃𝑟𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  data are illustrated in the top 

segment of Fig. 6. As our optimization criterion for this 
use case is focused on minimizing electricity costs. 
carbon intensities, although calculated, are not included 
in this chart. 

Using the simulation model and guided by the 
preliminary windows indicating the potential profitability 
of loading or unloading, we identified the actual loading 
∆𝑡𝑙𝑜𝑎𝑑  and unloading ∆𝑡𝑢𝑛𝑙𝑜𝑎𝑑  intervals. As Fig. 6 
shows, there are intervals outside of ∆𝑡𝑙𝑜𝑎𝑑  and 
∆𝑡𝑢𝑛𝑙𝑜𝑎𝑑 . During these periods, the compression 

ENERGY FLEXIBLE OPERATION

BASED ON THE PRICE FORECAST

Fig. 6. Presentation of the calculation basis and the results of 
the exemplary use case for reference operation and for 
energy-flexible operation. Highlighting the loading and 

unloading phases. 



 

9 

refrigeration unit operates in direct cooling mode, 
bypassing loading or unloading actions that aren't 
considered efficient - for example, when the TES is at full 
capacity and its conserved energy is more sensibly 
reserved for subsequent unloading phases. The second 
segment of Fig. 6 shows the cooling requirements of the 

reference scenario 𝑄̇𝑟𝑒𝑓 . 𝑄̇𝑓𝑙𝑒𝑥  is spread across the 

∆𝑡𝑙𝑜𝑎𝑑  intervals, while the cooling required during 
∆𝑡𝑢𝑛𝑙𝑜𝑎𝑑 is provided by the TES, as observed in the SOC 
trajectory. 

Finally, the third segment of the figure compares the 
cost vectors of the benchmark scenario 𝐶𝑟𝑒𝑓  with the 

energy-flexible operation 𝐶𝑓𝑙𝑒𝑥. Within the observation 

window from 30 January to 5 February 2023, the energy-
flexible operation generates a cumulative cost saving of 
12.33 % compared to the benchmark operation. At the 
same time, the associated CO2 savings are 9.94 %, 
highlighting the strong correlation between electricity 
prices and carbon intensities. 

The time interval shown in Fig. 6 best represents the 
median savings for the first half of 2023. Importantly, the 
SOC begins and ends the interval with comparable 
values, ensuring an authentic representation of savings 
so that divergent storage states do not distort the 
results. 

5. CONCLUSION AND OUTLOOK 
In energy forecasting, the results of the model 

presented in this work are promising. Our model's ability 
to predict energy trends demonstrates its potential for 
wider real-world applications. Although there are some 
discrepancies between the model's predictions and 
actual market data, they remain sufficiently small, 
suggesting a good level of reliability. This consistent 
performance instills confidence that the forecasts can be 
valuable inputs when assessing EFM. Furthermore, our 
exemplary use case provides compelling evidence of the 
model's utility. Through its application, there's a distinct 
potential for significant reductions in both operational 
costs and CO2 emissions associated with energy 
provision. The versatility of the model suggests that, 
depending on the specific context of its implementation, 
the savings identified could even be exceeded. 

Looking ahead, the model can be seamlessly 
integrated into the control mechanisms of a real 
production facility. By combining this with a simulation 
model and applied operational optimization, there is an 
opportunity to analyze and validate the effectiveness of 
the model over long periods of time. A key focus will be 
to determine optimal intervals for iterating the training 

of the model, as shown in Fig. 3. This iterative approach 
ensures that the forecasting tool remains current and 
relevant. Finally, given the universal challenges and 
opportunities associated with energy management, 
adapting the model to handle international datasets 
seems a logical progression. This adaptation would pave 
the way for its use beyond German borders, making its 
insights and benefits available to a wider global 
audience. 
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