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ABSTRACT: Making the leap toward a clean future can be 
challenging. Network planning is essential to combat 
those challenges. This research work focuses on the 
planning field, dealing with daily uncertainty, energy 
storage systems, remuneration of distributed resources, 
and CO2 emissions while considering the impacts of the 
seasons on the network expansion. In that regard, a 
multi-stage stochastic optimization model is proposed to 
minimize all planning costs and CO2 emissions. The 
model is tested in a 180-bus realistic 30kV medium-
voltage distribution network in the Leiria district, 
Portugal, with high renewable energy penetration, in a 
30-year lifetime project. 
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1. INTRODUCTION 

The landscape of modern networks requires a 
collective effort from policymakers and network 
contributors alike to meet the desired target of 40% 
renewable energy source (RES) penetration by 2030, 
imposed by the European Union. Thus, it is mandatory to 
adequately prepare the network in the planning stage 
without disregarding the involving factors, such as 
energy storage systems (ESS), uncertainty, remuneration 
of distributed generation (DG) [1], CO2 emissions [2], 
while also attributing importance to the seasonal effects 
[3]. Kayal et al. present a planning approach for 
integrating solar, wind, and capacitor banks in an electric 
power distribution network [4]. The model seeks to 
lower costs, losses, emissions, voltage stability, and 
network security. The model uses a multi-objective 
particle swarm optimization algorithm with fuzzy 
decision-making to find RES and capacitor units’ optimal 
location and size on a 28-bus Indian rural distribution 
network. The results show that the proposed model 
outperforms single renewable energy sources or 
capacitor units. Home-Ortiz et al. [5], propose a 
stochastic mixed-integer convex programming model for 

long-term distribution system expansion planning 
accounts for greenhouse gas emissions and predicts the 
best substation reinforcement, conductor replacement 
for overloaded feeders, and renewable and dispatchable 
distributed generation unit location and sizing. The 
model accounts for wind production power and 
electricity usage unpredictability. The model is tested 
under different scenarios on a 34-node distribution 
system and a 135-node real network. The model 
generates an economic investment plan that reduces 
distribution network carbon emissions. Lima et al. in [6], 
provide a mathematical model for electrical distribution 
system expansion planning that balances cost and CO2 
reduction. Investments for renewable and non-
renewable substations, circuits, and distributed 
generation units are considered. Demand and renewable 
generation uncertainties are addressed using two-stage 
stochastic programming based on scenarios. The 
enhanced-constrained method generates Pareto 
optimum solutions for multi-objective problems. A 54-
node distribution system case study shows the trade-off 
between the two objectives and how renewable 
distributed generation affects expansion. 

Melgar Dominguez et al. in [7] use a mathematical 
model to optimize electrical distribution system (EDS) 
architecture by considering RES location and quantity, 
capacitor banks, and ESS. The idea reduces EDSs’ energy, 
investment, and environmental impacts while improving 
their technical performance. The model adjusts for 
photovoltaic generating and consumption uncertainties 
using external uncertainty indexes. The mixed-integer 
nonlinear programming model is linearized and solved 
using commercial tools. The model saves money, 
improves voltage, and reduces emissions on a 135-node 
distribution system. 

Lastly, Lima et al. in [8] describe a mathematical 
model for allocating electric vehicle charging stations 
(EVCSs) and RES in EDS. The model considers the 
uncertainties of traditional consumption, EV demand, 
renewable generation, and the environmental impact of 
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CO2 emissions. A commercial solver solves the model, 
written as a two-stage stochastic mixed-integer linear 
programming problem. The results suggest that 
allocating EVCSs and RES simultaneously can minimize 
the EDS’s total cost and CO2 emissions. The paper also 
conducts sensitivity analysis with various CO2 emission 
rates and levels of EV adoption. 

The proposed advancement in the state-of-the-art 
corresponds to an innovative stochastic methodology to 
adequately implement all the mentioned topics 
(Uncertainty, ESS, Remuneration of resources, seasonal 
impacts, and CO2 emissions). While most of them are 
commonly addressed, they are never considered 
together, so we aim to give each of them equal 
importance, as a contribution to the field. To the best of 
the authors’ knowledge, the answer to “Can a stochastic 
optimization model for long-term distribution network 
planning considering uncertainty, ESS, remuneration of 
DG, and CO2 emissions be economically viable?” has not 
been answered. The proposed model is applied to a 180-
bus network with one substation, 42 Wind farms, 33 PV 
parks, three biomass generators, two ESSs, 90 loads, and 
five electric vehicle parking lots (EVP). This paper is 
organized into the following sections: 1- Introduction 
where the topic and relevant literature are briefly 
addressed, 2-Proposed Methodology where the 
proposed method is explained; 3-Case Study and 4-
Results are the details and results of the study, and lastly, 
5-Conclusions, where the conclusions are drawn. 

2. PROPOSED METHODOLOGY 

The proposed method is explained in this section.  

2.1 Scenario definition and uncertainty application 

The main scenarios of this model follow [9], where 
the division of the seasons and daily periods remains the 
same. From these 16 main scenarios, four variations are 
generated for each, resulting in 64 total sub-scenarios. 
Table 1. Multiplicative Factors for PV/Wind/Load 

Season 
Multiplicative Factor for PV/Wind/Load 

Morning Peak Afternoon Night 

Summer 
1.40/1.00 

/0.99 
3.20/1.60 

/1.11 
2.40/1.00 

/0.91 
0.05/0.80 

/0.59 

Spring 
1.00/1.00 

/1.00 
2.60/1.40 

/1.12 
1.40/1.00 

/0.92 
0.05/0.80 

/0.65 

Fall 
1.00/1.00 

/1.03 
2.20/1.40 

/1.16 
1.40/1.00 

/0.93 
0.05/0.80 

/0.65 

Winter 
0.60/1.00 

/1.03 
1.40/1.40 

/1.14 
1.00/1.00 

/0.95 
0.05/0.80 

/0.69 

Multiplicative factors were applied to the sub-
scenarios, which resulted from a study of wind, PV, and 
load behavior from Portugal from 2017-2022. Wind and 

PV data are obtained from [10] and load from [11]. The 
results are shown in Table 1. Spring morning was chosen 
to have 1.00 as factors, so all the other scenarios can be 
compared directly to it. 

2.2 Remuneration of resources and CO2 considerations 

The values in Table 2 were found by calculating the 
averages of the reported values in [12], [13]. A price for 
regular use was decided, as well as a price for generation 
curtailment, dubbed as “Excess Price”. The ESSs in buses 
31 and 87 present a contract between the DSO and a 
third party, allowing the DSO to free use of 25% of the 
ESS. Any new ESS that may be installed is assumed to be 
owned by the DSO. 
Table 2. Remuneration Prices of Each Technology 

Generation Source 
Normal Use Price 

(m.u./MWh) 
Excess price 
(m.u./MWh) 

Owned by the DSO 

Substation 55 300 

Biomass 45 300 

ESS 40 300 

Owned by another party, which needs compensation 

Wind Farms 45 150 

PV Parks 45 150 

ESS (Bus 31/87, in 
contract) 

30 150 

ESS (Bus 31/87, out 
of contract) 

400 1000 

 

As for the values in Table 3, they were found as an 
average of [14], [15]. The value corresponding to the 
emissions costs is 51 m.u./ton, the official social cost of 
carbon in the United States of America [16]. 

 

Table 3. Emission Rates of Each Technology 

 PV Wind ESS Biomass Substation 

Emission Rate 
(tons/MWh) 

0.0584 0.0276 0.2012 0.7550 0.6079 

Costs of Emission 
(m.u./ton) 

51 

2.3 Optimization model 

The suggested multi-stage stochastic model ensures 
a radial topology and permits investments in ESSs and 
possible additional power lines, feeders, and their 
corresponding transformers and ESSs. The project has a 
30-year lifespan cycle. The suggested model is written as 
MILP. The model provides the following information 
regarding the decision variables: 

• Power required by DSO (substation, biomass, and any 
ESS to be added apart from the ones in buses 31/87); 

• Power generation curtailment of DG; 

• Size and location of ESS; 

• Optimal network topology; 

• Optimal power flow for each line in each sub-
scenario; 
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• The model outputs the following information: 

• Every associated network-specific cost: new lines, 
lines’ maintenance, expected energy not supplied 
(EENS), power losses, ESS installation and 
maintenance, load cut, and power generation 
curtailment; 

• System average interruption duration index (SAIDI); 

• System average interruption frequency index (SAIFI); 

• Cost of the power required by DSO (substation, 
biomass, and any ESS to be added apart from the ones 
in buses 31/87) yearly; 

• Remuneration to the networks’ third-party 
generation providers (PV, Wind, ESS buses 31/87); 

• Economic analysis as a comparison to the original 
network; 

• CO2 emissions. 
The characteristics of the EVPs and all the wind 

turbines and PV modules follow [9]. 
There are ESSs installed on buses 31 and 87, but the 

model allows the installation of as many as it sees fit. 
The cost for power losses is considered 120 

m.u./MWh.  
The objective is to minimize all associated costs (1). 

1 2 2COPC PC PC PC= + +  (1) 

PC1/PC2 represents the stochastic model - 1st/2nd 
stage, and PCCO2 as the carbon emission costs. The 
objective function follows the one presented in [9], but 
now includes (2) to PC2 (resources remuneration) and (3) 
to PCCO2 (emissions). 

 

( ) Pr ( , ) Pr

( , ) Pr ( , ) Pr

Re

Sub bs ice Bio bio s ice

bio Bio

PV pv s ice WI wi s ice

pv PV wi WI

P Sub P Bio

mun
P PV P WI



 

  +  +
 

=   + 
 
 



 

 
(2) 

2

( ) ( , )

2 PV(pv, ) ( , )

E(e, )

S

Sub bs bs Bio bio s Bio

bio Bio

CO s PV WI wi s WI s CO

s pv PV wi WI

s E

e E

P P

PC P P EC

P

 

  





  



  
 +  +  

  
  =  +  +  
  
  
+   
  



  



 

(3) 

Where PSub is the amount of generation provided by 
the substation, SubPrice is the price for that respective 
generation, and bs is the emission rate of the substation. 
The same pattern applies to the other technologies. ϖs 
represents the scenario probability and ECCO2, the social 
cost of emissions, in m.u./ton. 
The model is also subject to the following constraints: 

• Power balance; 

• Power flow limit; 

• Unidirectionality of power flow; 

• Insurance of radial topology; 

• Avoidance of island creation; 

• Substation, biomass, and ESS maximum capacity; 

• ESS charge and discharge rate; 

• Price adaptation of ESS;  

• SAIDI and SAIFI limits; 

• Generation and load curtailment limit. 

3. CASE STUDY 

The method in section 2. was used to analyze a 30kV 
MV distribution network in the Portuguese district of 
Leiria. The network comprises 180 buses, 90 loads, 5 
EVPs, 2 ESSs, 42 wind farms, 33 PV parks, three biomass 
plants, and a 20 MW substation. As suggested, the 
network will permit the potential installation of new 
power lines. 

1 2 2CO riskMinimizePC PC PC PC FT= + + +  

There is an aim to reduce the SAIDI and SAIFI values 
by at least 10% from their original values of 24.48 (h 
/customer) and 5.98 (interruptions/customer), 
respectively. The initial network, where the model will 
apply the changes, is an adaptation of the network in [9]. 

4. RESULTS DISCUSSION 

The final network configuration is depicted in Fig. 1. 
The model proposes installing several new lines, e.g., 

103-105, a new feeder installation, and a new 
transformer in 1-125. The final values of SAIDI and SAIFI 
are 20.39h/customer and 4.10 int/customer, 
corresponding to a 20.11% decrease for the SAIDI and 
31.5% for the SAIFI. The total listing of costs is in Table 4. 

Table 4. Total listing of costs  

Investments 
Lines (w/ Transformer Cost) 1 253 550 m.u. 

ESS 400 000 m.u. 

Expenditures 

Excessive Generation 5 654 m.u. 

Power Losses 220 688 m.u. 

Expected Energy Not Supplied 1 235 604 m.u. 

Lines Maintenance 8 433 230 m.u. 

ESS Maintenance 864 392 m.u. 

Remuneration 
(Yearly) 

Substation 3 900 161 m.u. 

Biomass 291 880 m.u. 

Wind 499 340 m.u. 

PV 144 910 m.u. 

Storages 16 252 m.u. 

CO2 Emissions 

Substation 2 169 908 m.u./42 547 tons 

Biomass 248 099 m.u./4 865 tons 

Wind 15 619 m.u./306 tons 

PV 9 591 m.u./188 tons 

Storages 201 m.u./4 tons 

Total Costs 19 691 032 m.u. 

The economic analysis regarding the model can be 
seen in Table 5. This analysis is a comparative evaluation 
of the original network, which incurred a total cost of 
29 705 600 m.u. (adaptation of the network in [9]). 
Table 5. Economic Analysis  

Net Present Value (NPV) 8 356 240 m.u. 

Payback 4.92 years 

Internal Rate of Return (IRR) 20.26% 
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Despite the inclusion of resource remuneration and 
CO2 emission costs, the proposed model demonstrates a 
compelling economic appeal, characterized by a 
relatively abbreviated payback period (4.92 years). 

 
Fig. 1 Optimal Network Topology 

 

5. CONCLUSIONS 

The efforts to transition to a cleaner energy 
landscape are necessary, even if complicated. 
Considering aspects such as uncertainty, storage, 
remuneration of resources, and CO2 emissions is a must, 
especially at the network planning stage. This work 
proposed an innovative stochastic optimization model 
that attributes adequate importance to all relevant 
aspects of modern networks. The economic analysis 
proves that the model is economically interesting, with 
an NPV of 8 356 240 m.u. and a relatively short Payback 
of 4.92 years. For future work, the authors plan to 
implement multi-period investment. 
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