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ABSTRACT 
 The increasing sophistication of transmission network 
expansion planning (TNEP) can be attributed to several 
evolving factors. These include the uncertain nature of 
renewable energy sources, the introduction of new 
market regulations and participants, and ongoing 
demand amplification in line with the increasing 
integration of electric vehicles and energy storage 
systems. The TNEP is a complex optimization problem 
that finds the optimal number and location of new 
transmission lines to satisfy system demand. In this work, 
we propose a hybrid-adaptive differential evolution with 
an iterated local search algorithm to solve this 
combinatorial problem and evaluate the performance of 
multiple acceptance criteria for solution selection in the 
iterative process for an 87-bus north-northeast Brazilian 
transmission system. Results showed that the HyDE-ILS 
strategies reduced the total costs by around 5% to 6% 
compared to HyDE on average. 
Keywords: acceptance criteria, hybrid-adaptive 
differential evolution, iterated local search, transmission 
network expansion planning. 

1. INTRODUCTION 
The surge in distributed energy resources, mainly 

renewable generation, coupled with the massive 
integration of electric vehicles and the rise in household 
appliances, has altered consumption patterns and 
heightened the power demand. This scenario calls for an 
in-depth review of how the electrical system needs to 
evolve [1]. A long-term transmission network expansion 
planning (TNEP) needs to be implemented to properly 
operate the transmission system to support the 
integration of such resources. The TNEP is a prevalent 
problem in electrical power systems, where the primary 
objective is to find the most economical system 
configuration so proper operation can be guaranteed 
over a specific planning horizon [2]. Many studies have 

been done regarding TNEP optimization. In [3], a bi-level 
evolutionary optimization using a genetic algorithm is 
used for a coordinated generation and TNEP through an 
independent system operator standpoint. The work in 
[4] proposes a teaching learning-based optimization 
method to solve the TNEP problem for two different 
transmission systems. In [5], Bender's decomposition 
approach is implemented to optimize a security-
constrained co-planning of transmission line expansion 
and energy storage to accommodate the penetration of 
renewable energy. In this work, we intend to use an 
iterated local search (ILS) algorithm to improve the 
results obtained from a hybrid-adaptive differential 
evolution (HyDE) algorithm with different acceptance 
criteria, such as better, annealing, and restart 
approaches [6], regarding solution selection in the 
iteration process, to solve the large-scale TNEP problem, 
introduced in the "2023 Competition on Evolutionary 
Computation in the Energy Domain: Operation and 
Planning Applications" [7]. To the author's knowledge, 
this sort of implementation using a metaheuristic with a 
local search method such as HyDE has yet to be seen in 
the literature regarding TNEP optimization. 

2. METHODOLOGY 
This section shows the TNEP formulation regarding 

the objective function and the ILS process used to 
improve the solutions provided by the HyDE algorithm. 

2.1. Transmission System 

The optimization problem is labeled as mixed-integer 
non-linear of combinatorial nature, non-convex, 
multimodal, and highly complex to optimize for high 
dimensionality [8]. Eq. (1) depicts the objective function: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 =  ∑ 𝐶𝑖𝑗𝑁𝐿𝑖𝑗

𝑖𝑗∈Ω𝐵𝑟

+ 𝜌 ∑ 𝐿𝑠𝑖

𝑖𝜖Ω𝐵𝑢

 (1) 
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where Ω𝐵𝑟  represents the set of branches in the system   
going from bus 𝑖 to bus 𝑗 and Ω𝐵𝑢 represents the set 
of buses of the transmission system. The parameter 𝐶𝑖𝑗 

is the cost associated with constructing a new line on the 
branch 𝑖𝑗, and the parameter 𝜌 is the penalty cost for 
load shedding at bus 𝑖. The decision variables are given 
by 𝑁𝐿𝑖𝑗  corresponding to the number of lines to be 

constructed on branch 𝑖𝑗 and 𝐿𝑠𝑖 represents the load-
shedding power at bus 𝑖. The objective function is a cost 
minimization function, subject to several constraints, 
such as Kirchoff's laws for current and voltage, the 
transmission capacity limits for the network branches, 
the bus load shedding maximum bound, the maximum 
number of lines limit, and the constraint that verifies the 
𝑁𝐿𝑖𝑗  variable must be an integer. The variable 𝑁𝐿𝑖𝑗  can 
be fixed at a value, which in this case will be given by the 
metaheuristic 𝑁𝐿𝑖𝑗

∗ , ∀𝑖𝑗 ∈  Ω𝐵𝑟 . This makes the non-

linear problem into a linear programming problem, 
which can be formulated as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓′ = 𝜌 ∑ 𝐿𝑠𝑖

𝑖𝜖Ω𝐵𝑢

 (2) 

This objective function minimizes the generation 
cost of the artificial generators or the load shedding cost 
penalty, where 𝜌  assumes a substantial value of 1e9 
$/MW. This function is subject to all the previous 
constraints, except the maximum number of lines and 
the constraint that dictates that this variable must be 
integer since we now have this value fixed. A DC optimal 
power flow then optimizes this equation. The solution 
returned by this equation is only feasible if it equals 0. 

The fixed value of 𝑁𝐿𝑖𝑗
∗  is then added to the 

previous equation, which gives the objective function to 
be optimized by the metaheuristic: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓′′ = ∑ 𝐶𝑖𝑗𝑁𝑖𝑗
∗

𝑖𝑗∈Ω𝐵𝑟

+  𝜌 ∑ 𝐿𝑠𝑖

𝑖𝜖Ω𝐵𝑢

 (3) 

The complete mathematical formulation and 
optimization process can be consulted in [9].  

2.2. Iterated local search method 

The ILS approach is described in Algorithm 1. The 
algorithm receives as input the parameters needed to 
perform the ILS optimization, the case study data 
regarding the transmission system information, the 
lower and upper variable bounds, and the initial solution. 
The initial solution for this particular case is the best 
solution obtained from the HyDE algorithm (for a 
description of HyDE, please see [5]), which is then passed 
as an argument to a hill-climbing function responsible for 
the local search process, where the best solution 
obtained is as a local minimum for the iterative process. 

Iteratively, the algorithm perturbs the solution to avoid 
getting suck in local optima, which may lead to a worse 
solution, which is why the local search is applied once 
again so the new solution space can be locally explored. 
Finally, an acceptance criterion is chosen to select the 
best solution for each iteration. We propose three 
different acceptance criteria based on [10]. The first 
corresponds to the better acceptance criteria, where 
only better solutions are accepted with lower fitness 
values. The second acceptance criteria is the restart 
approach, where solutions with better fitness are always 
accepted. Still, after a determined number of iterations 
without any improvement, the algorithm restarts with 
the obtained HyDE solution being associated again. The 
last proposed acceptance criteria represents the 
annealing method based on the simulated annealing (SA) 
algorithm. Like in the previous cases, better solutions are 
still always accepted. However, worse solutions can still 
be accepted according to an annealing-like cooling 
schedule, given by an acceptance probability. After the 
iterative process, the algorithm returns the best-found 
solution, which for outputs the cost of the best solution 
is also computed, as well as the fitness vector, with the 
fitness value for each iteration. 

Algorithm 1: Iterated Local Search Method 

 Input: ILS parameters, case study data, variable 
bounds, initial solution 

 Output: Best cost value, best solution, fitness 
vector 

1 𝑠 ← get_HyDE_solution 
2 𝑠𝑏𝑒𝑠𝑡← hill_climbing(𝑠) 
3 𝑖𝑡 ← 1 
4 while 𝑖𝑡 < 𝑚𝑎𝑥𝐼𝑡 
5  𝑠𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑 ← perturb(𝑠𝑏𝑒𝑠𝑡) 

6  𝑠𝑛𝑒𝑤 ← hill_climbing(𝑠𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑) 

7  𝑠𝑏𝑒𝑠𝑡  ← acceptance_criteria(𝑠𝑛𝑒𝑤) 
8 endwhile 
9 return 𝑠𝑏𝑒𝑠𝑡 

3. CASE STUDY 
This section shows the case study regarding the 

transmission system information and the parameters 
utilized for the HyDE-ILS algorithm. 

3.1. Transmission System 

This study focuses on the north-northeast Brazilian 
transmission system with 87 buses and 183 branches 
present in Fig. 1. If generation rescheduling and losses 
are disregarded, the system's overall generation equals 
the total demand of 29,748 MW. The current values are 
multiplied by 1.2 to obtain the original values of 



3 

generation and demand, resulting in 35,697.60 MW of 
total demand and generation. Of the 183 branches, only 
71 have lines currently in place, while the remaining 112 
have no existing lines. It is possible to construct up to 15 
new lines on each branch.  

Fig. 1 Line-diagram of the north-northeast Brazilian transmission network 
(taken from [9]). 

3.2. HyDE-ILS parameterization 

When it comes to metaheuristic parameterization 
for the different variations of the HyDE-ILS algorithm, 
Table 1 shows only the parameters considered for the ILS 
part of the process because when it comes to the HyDE 
algorithm, a total number of 10 individuals were 
considered, with 2,000 iterations corresponding to 
20,000 fitness function evaluations. For the mutation 
and crossover processes, a value for the scaling factor 
was considered 0.3 and 0.5 for crossover probability. 
These are only initial values because this algorithm is 
self-adaptive, which means it will adapt these 
parameters according to the search process. For all 
HyDE-ILS variants, a maximum of 50 iterations (𝒊𝒕𝒎𝒂𝒙) 
was considered for the ILS search process due to time 
constraints, and a step size of 0.1 of the variable value 
was considered for the hill climbing algorithm. The 
remaining parameters are shown in Table 1.  

Table 1 HyDE-ILS parametrization for all acceptance criteria. 

The 𝒌𝒎𝒊𝒏  and 𝒌𝒎𝒂𝒙  represent the minimum and 
maximum limits of the number of variables selected to 
be perturbed in the perturbation part of the ILS 
algorithm and is present in all variations. Concerning the 

HyDE-ILS Restart approach, the number of iterations to 
restart the algorithm after there is no improvement in 
the solution is given by 𝒊𝒕𝒓𝒔𝒕 . Regarding the final 
acceptance criteria based on SA, the initial temperature 
(𝒊𝑻) is assumed to be 2.5% of the new solution cost, 𝒊𝒕𝑻 
represents the number of iterations where that 
algorithm stays at a certain temperature, after these 
iterations the temperature is decrease according to the 
parameter α. 

4. RESULTS AND DISCUSSION 
The optimization results of HyDE-ILS are shown in 

Table 2 for each acceptance criteria, which are compared 
to the results obtained from the HyDE algorithm in [9].  

Table 2 Average and stand deviation costs, load shedding costs and 
optimization time for 20 runs. 

In all of the HyDE-ILS results, an improvement is 
shown regarding the average costs throughout 20 trials. 
The HyDE-ILS Better achieved a reduction of 4.96% 
compared to HyDE, while HyDE-ILS Restart achieved a 
reduction of 5.53%, and HyDE-ILS Annealing achieved a 
5.92% cost reduction. All the algorithms presented 
feasible solutions with the load shedding cost being 0 $. 
Regarding optimization time, introducing the ILS 
mechanism to HyDE increased the optimization time by 
several minutes since, in the local search, we look into all 
the possible situations where the solution can still be 
improved, which is very time-consuming. The slowest 
implemented strategy was the HyDE-ILS Better and the 
fastest was the HyDE-ILS Restart due to the restart 
mechanism, which decreases optimization time. The 
lines constructed in the transmission system, the costs 
for line construction, and the resultant costs for the 
construction of the obtained lines are presented in Fig. 2. 
The solution presented in this figure is for a run of HyDE-
ILS Restart, which obtained the lowest costs of all three 
strategies (4.41e6 $). It is possible to observe that for 
high construction costs, for the most part, the algorithm 
decided to construct no lines or a small number of lines 
on the respective branches. The algorithm convergence 
for each acceptance criteria is shown in Fig. 3. The HyDE- 

Algorithm 𝑘𝑚𝑖𝑛 𝑘𝑚𝑎𝑥  𝑖𝑡𝑟𝑠𝑡 𝑖𝑇 α 𝑖𝑡𝑇 

HyDE-ILS 
Better 

3 50 - - - - 

HyDE-ILS 
Restart 

3 50 0.2 ⋅
𝑖𝑡𝑚𝑎𝑥  

- - - 

HyDE-ILS 
Annealing 

3 50 - 0.025 ⋅
𝑓(𝑠𝑛𝑒𝑤)  

0.9 10 

Algorithm Avg. Costs ± 
std ($) 

Load 
Shedding 
($) 

Avg. Time ± 
std (min) 

HyDE [9] 5.24e6±4.62e5 0 8.48±0.69 

HyDE-ILS 
Better 

4.98e6±2.79e5 0 74.55±6.35 

HyDE-ILS 
Restart 

4.95e6±4.10e5 0 65.02±16.06 

HyDE-ILS 
Annealing 

4.93e6±2.16e5 0 73.44±17.22 
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ILS Better strategy, as expected, only improved the 
solution, and the HyDE-ILS Restart with the restart 
mechanism implemented was also able to improve the 
initial solution from the HyDE algorithm. In comparison, 
the HyDE-ILS Annealing strategy, after a few iterations, 
started to accept worse solutions with no improvement 
from the initial HyDE solution. 

 
Fig. 2 Lines constructed for each branch and respective costs. 

 
Fig. 3 Average HyDE-ILS convergence curves for each acceptance 

criteria. 

5. CONCLUSIONS 
This paper integrated an iterated local search 

approach into a hybrid-adaptive differential evolution 
algorithm to improve its results for a TNEP problem. 
Results showed that this strategy improved the results 
obtained from only using the HyDE algorithm at a time 
expense, with HyDE-ILS Annealing showing the lowest 
average costs from all three strategies. However, when 
analyzing the convergence curve, it was possible to 
conclude that HyDE-ILS Annealing only worsened the 
results with little to no improvement in the perturbation 
and local search processes, so the other two strategies 
would be more beneficial. In future work, we intend to 
apply this strategy to the first three ranked algorithms in 
the competition to see if there is any improvement in 
their solutions, which was not considered in this study. 
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