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ABSTRACT 
 Parameter estimation methods based on recursive 
least squares (RLS) are extensively used in the online 
identification of battery models. Forgetting factor RLS 
(FFRLS), which can track the parameter changes online, 
has been regarded as an essential solution to real-time 
model adaptation. However, under the non-persistent 
excitation condition, the performance of FFRLS will 
degrade and the covariance windup phenomenon will be 
triggered, as a consequence, FFRLS will become 
numerically unstable and lose the capacity to provide 
reliable estimates. In this paper, a new scheme named 
exponential resetting RLS (ERRLS) is proposed to 
overcome the aforementioned shortcoming, the 
mechanism of information matrix updating is modified to 
guarantee exponential convergence towards a non-zero 
matrix under no excitation. This modification will result 
in a bounded covariance matrix whether the excitation is 
persistent or not, which implies an improved robustness 
in comparison with FFRLS. Experimental results indicate 
that ERRLS can achieve better performance than FFRLS 
when the persistent excitation condition is violated. 
 
Keywords: battery modeling, equivalent circuit model, 
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NONMENCLATURE 

Abbreviations  
RLS Recursive Least Squares 

FFRLS 
Forgetting Factor Recursive Least 
Squares 

VFFRLS 
Variable Forgetting Factor Recursive 
Least Squares 

CNRLS 
Condition Number based Recursive 
Least Squares 

VDFRLS 
Variable Direction Forgetting 
Recursive Least Squares 

ERRLS 
Exponential Forgetting Recursive 
Least Squares 

BMS Battery Management System 
SoC State of Charge 
ECM Electrical Circuit Model 
PE Persistent Excitation 
Symbols  

 Forgetting Factor 

 Voltage Prediction Error 

 Output of estimator 

 Input of estimator 

 Estimate of parameter vector 

 Covariance Matrix 

 Information Matrix 

 Gain Vector 

 Identity matrix 

 Open Circuit Voltage 

 Ohmic Resistance 

 Polarization Resistance 

 Polarization Capacitance 

1. INTRODUCTION 
As one of the most prevalent energy storage devices, 

batteries are indispensable in our daily lives. The 
widespread deployment of batteries has promoted rapid 
development in relevant industry sectors, from 
consumer electronics, electrified transportation to grid 
energy storage [1]. Considering that batteries are 
vulnerable to harsh environments and abnormal usage, 
an advanced battery management system (BMS) is 
required to track battery states and optimize battery 
performance [2]. The model-based methods are 
appropriate choices for real-time monitoring and control 
purposes in BMS, particularly for the State of Charge 
(SoC) estimation [3]. The equivalent circuit models 
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(ECMs) consist of basic components like resistors, 
capacitors, and ideal voltage sources. They can be 
connected in different ways to form various topologies, 
which makes the modeling approach flexible and 
universal for various battery chemistries. Moreover, 
owing to the simple structure and the limited number of 
parameters, ECMs can be identified online with a low 
computational cost, and the timely update of model 
parameters will improve the accuracy and efficiency of 
state estimation [4]. 

The technique of least squares has long been applied 
in system identification problems. As the most practical 
version, recursive least squares (RLS) can achieve fast 
calculation with modest computational resources, and 
the obtained estimates is unbiased, consistent and 
efficient provided that the measurement noise is white. 
The characteristics of simple implementation, fast 
convergence and low complexity make RLS applicable to 
online time-invariant system identification. However, as 
has been pointed out by relevant literature, with the 
accumulation of successive measurements, the 
parameter correction ability of RLS will degenerate 
gradually, new observations can no longer contribute to 
updating model parameters, resulted in the 
phenomenon of “data saturation”. To overcome this 
inherent shortcoming and extend the utilization of RLS to 
real-time parameter tracking of time-variant systems, a 

forgetting factor  is integrated into RLS. Through 

assigning heavier weights to more recent 
measurements, the estimates from RLS can converge to 
real parameter values exponentially under the persistent 
excitation condition, hence the slow-varying parameters 
can be estimated continuously to reveal their time-
dependent variations [5, 6]. Since the change of battery 
states and environmental conditions will both influence 
the electrochemical processes inside batteries and lead 
to parameter variations in ECMs, the forgetting factor 
RLS (FFRLS) becomes an appropriate choice to achieve 
online parameter identification. It has been reported 
that SoC estimation frameworks based on FFRLS can 
fulfill sufficient accuracy for advanced battery 
management [7-9]. Nevertheless, the selection of a 
constant  implies a trade-off between the ability of 

fast tracking and the robustness of estimator. FFRLS is 
able to provide smooth parameter trajectories when  

is close to 1, at the sacrifice of real-time capabilities. 
Otherwise, if a relatively small  is used, parameter 

changes can be detected promptly due to accelerated 
forgetting, but the estimator also becomes sensitive to 

measurement noises accordingly, conspicuous 
discontinuities in parameter trajectories will emerge, 
which reduces the reliability of parameter estimation 
and usually indicates a violation of prior knowledge on 
the corresponding system dynamics. Another serious 
problem lies in the numerical stability of FFRLS under 
non-ideal conditions, in case that the excitation is non-
persistent, the old information is discarded exponentially 
but only a part of them can be supplemented by the 
newcoming measurements. At this time, the covariance 
matrix  will grow continuously towards infinity, and 

the unbounded gain vector  will amplify the 

disturbance of measurement noises greatly, inducing a 
numerically unstable parameter identification [10]. 

During the normal operation of batteries, it's 
impossible for the applied current profiles to always 
satisfy the persistent excitation (PE) condition. When 
batteries are under a quasi-steady state, e.g., constant 
current charging/discharging or idling, terminal voltage 
and load current are both stable in a relatively long time 
interval, which will trigger the aforementioned 
“covariance windup” phenomenon. In order to limit the 
expansion of the covariance matrix , a variety of 

variable forgetting factor RLS (VFFRLS) schemes have 
been proposed, with differences in the specific forgetting 
factor tuning mechanisms. For instance, at each time 
step, the forgetting factor can be determined to maintain 
an invariant information content within the covariance 
matrix  [11], or adjusted according to the statistics 

of the error signal [12], etc. Particularly, when VFFRLS is 
adopted in the online parameter identification of battery 
ECMs, a prevalent strategy is shown by Eq. (1), in which 

the forgetting factor  is explicitly correlated to the 

instantaneous voltage prediction error  [13]. 

  (1) 

Furthermore, the instantaneous error  is replaced by 

the average error within a preset sliding time window 

, by this means, the variation of  tends to 

be smooth and the dramatic change can be avoided 
when an impulsive error comes [14]. Eq. (2) shows 
another refined approach developed from Eq. (1), in 
which a sensitivity coefficient  is employed to 

represent the sensitivity of the forgetting factor  

w.r.t. the instantaneous error , and the expected 
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voltage noise level  is integrated into the 

calculation of the exponent . Due to an increased 

degree of freedom, the forgetting factor  can be 

adjusted more meticulously [15]. 

  (2) 

However, such slight modifications doesn't alter the 
essential mechanism of VFFRLS, so the achievable 
performance improvement is constrained, and the 
subjective intermediate parameter settings can greatly 
influence the behaviour of estimator, since no 
quantitative criteria have been proposed to guide the 
configuration of VFFRLS algorithms. 

Because  is directly controlled by  rather 

than the mathematical properties of , the adaptive 

regulation of  in VFFRLS is aimed at reducing the 

instantaneous error, despite that it may contribute to 

alleviating the growth of  to some extent 

concurrently, the actual effect is uncertain under 
practical applications. Several novel formulations of RLS 
have been reported to address “covariance windup” 
recently. For instance, a condition number based 
recursive least squares (CNRLS) have been proposed, in 

which the condition number of  is utilized to 

evaluate the numerical stability of RLS estimator. By 
preventing the occurrence of an ill-conditioned 
covariance matrix, CNRLS can yield reliable estimates 
with less computational burden when the current 
excitation is non-persistent [16]. Variable-direction 
forgetting RLS (VDFRLS) is another example of improving 

the robustness of RLS from the perspective of . It 

have revealed that the correlation between the 

information matrix  and the system input  can 

be analyzed in a vector space. Based on a geometric 
analysis, a variable-direction forgetting method has been 
presented to selectively forget old information according 
to the direction of newcoming data vector at each time 
step, thus the boundedness of the information matrix 

 can be ensured [17, 18]. In conclusion, covariance 

resetting and covariance modification are simple but 
effective measures to eliminate the risk of “covariance 

windup”, since the covariance matrix  will be 

corrected mandatorily once the upper bound is 
exceeded. However, theoretical guidance on the 
innovative algorithm design is still worth in-depth 

exploration, and the potential impacts on the 
performance of RLS based algorithms need to be further 
clarified [19-22]. 

In this article, a new extension of FFRLS, namely 
exponential resetting recursive least squares (EFRLS), is 
adopted to cope with the reduced robustness of battery 
model parameter identification when the current 
excitation is non-persistent. The covariance matrix  

is endowed with well-designed resetting properties, it 
will spontaneously converge to a predefined positive 
definite matrix  if the PE condition is not satisfied, 

rather than experience an explosive growth toward 
infinity. This significant change guarantees the 
boundedness of the covariance matrix  under any 

circumstances. Actually, considering that the current 
profiles in practical battery applications are adaptive to 
real-time power demands, and can't be arbitrarily 
designed in advance to meet the PE condition, EFRLS 
shows superior practicality in comparison with 
conventional FFRLS for certain robustness without any 
external assistance. 

2. EXPONENTIAL RESETTING RECURSIVE LEAST 
SQUARES 

Eqs. (3)-(6) shows the main procedures of FFRLS, 
where  denotes the estimation error, and  

are the output and input of the RLS estimator, is the 

estimate of parameter vector,  and  represent 

the covariance matrix and the gain vector respectively.  

  (3) 

  (4) 

  (5) 

  (6) 

In order to get an intuitive understanding of the adaptive 
process, the information matrix  can be 

utilized, and an equivalent form of Eq. (4) can be 
expressed as 
  (7) 

the core mechanism of forgetting in RLS is exhibited 
explicitly in Eq. (7), with a forgetting factor , 

 has a tendency to shrink exponentially to , while 

the addition of  at each time step contributes in 

the opposite direction. To put it simply, Eq. (7) describes 
the information update process, old information is 
forgotten gradually, and new information from recent 
measurement data is supplemented continuously to 
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ensure sufficient, fresh information content which plays 
an important role in online parameter estimation. 

Motivated by Eq. (7), we would like to consider a new 
way of information matrix updating: 

  (8) 

where  is a specified positive infinite matrix, and it 

can be easily demonstrated that  is positive definite 

for  provided that  is positive definite. A 

tight lower bound of  can be given directly as 

  (9) 

Note that the persistent excitation condition is no longer 
needed in the derivation of Eq. (9). Similarly, a tight 

upper bound of  can be obtained, suppose that 

there exists  such that  holds for 

, then 

  (10) 

Rigorous proofs of Eqs. (9)-(10) can be found in a relevant 
paper [23]. 
According to the aforementioned conclusions, the 
boundedness of the information matrix  can be 

guaranteed as long as the system input is bounded. 

Under a special case that ,  will converge to 

 rather than reduce to . As a result, the gain 

vector  in Eq. (5) will be limited within an acceptable 

range. By this means, the sensitivity to noise can be well-
controlled no matter the excitation is persistent or not. 
This valuable property will improve the performance of 
FFRLS based online parameter identification under non-
ideal conditions, and enhance the applicability of ECM 
based state estimation methods designed for industrial 
use. 

3. CASE STUDY 
A 3 Ah Li-ion rechargeable cell INR18650/33V 

produced by EVE Energy CO. LTD. is tested on a high 
precision battery test platform, which consists of a 
programmable temperature chamber, a host computer 
and a battery test system. The experimental data are 
logged at a time interval of 1s. First, the cell is fully 
charged under constant current - constant voltage mode, 
then rested for 2h to achieve a steady state, finally, 
successive dynamic stress test (DST) cycles are 
conducted to discharge the cell until the cut-off voltage 
is reached, and a 60s rest period is inserted between two 

adjacent discharging profiles. The load current and cell 
voltage are shown in Fig. 1. 
 

 
Fig. 1. Experimental results of (a) current and (b) voltage 

under DST cycles. 

The first-order ECM that comprises an ideal voltage 

source ( ), an ohmic resistance ( ) and a parallel RC 

network (  and ) is selected to characterize battery 

voltage dynamics. After model discretization, a 
regression model expressed as 

  (11) 

can be obtained [24], where 

  (12) 

Generally, the model is similar to the autoregressive 
models with extra inputs in time series analysis, which 
can be identified by the proposed EFRLS. Let , 

, , the results of 

parameter identification is presented in Fig. 2. 

 
Fig. 2. Parameter estimates under DST cycles. 
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The Frobenius norm of  is used as a measure of 
numerical stability, along with cell voltage prediction 
error, are depicted in Fig. 3. By evaluating the volatility in 
parameter estimates and the norm of the covariance 
matrix, it can be concluded that ERRLS is more robust and 
accurate than FFRLS. 

 
Fig. 3. (a) the Frobenius norm of covariance matrix and (b) 

voltage error under DST cycles. 

4. CONCLUSIONS 
In this paper, aimed at improving the robustness of 

FFRLS under non-persistent excitation, the conventional 
scheme of updating the covariance matrix is modified to 
prevent the covariance windup phenomenon. Instead of 
growing towards infinity, the covariance matrix will be 
limited within a preset range when the persistency of 
excitation is lost. A new extension of RLS based on the 
aforementioned covariance updating mechanism is 
proposed, thanks to its exponential resetting property, 
the covariance matrix is always bounded, regardless of 
the specific excitation condition. Hence, when compared 
with FFRLS, the proposed exponential resetting RLS 
(ERRLS) is more robust against noises, and has the ability 
to provide more reliable parameter estimates under 
complicated conditions, which is extremely important in 
online parameter identification of battery models. 
Theoretical analysis and experimental verification are 
conducted, and the superiority of ERRLS in robustness 
and accuracy is confirmed by the obtained results. It's 
believed that the proposed method will offer some new 
insight into the solution of real-time parameter and state 
estimation for batteries. 
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