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ABSTRACT 
 In order to handle the rising global energy 
demand and lower carbon emissions, hydrogen, a clean 
and sustainable energy source, is essential. The creation 
of hydrogen is significant because it has the potential to 
transform the energy industry by providing a sustainable 
alternative to conventional fossil fuels. Deep learning has 
been a potent tool in recent years, exhibiting 
outstanding performance and dependability in a variety 
of domains, including the prediction of hydrogen 
generation. The optimization of hydrogen production 
methods to increase their effectiveness and reduce costs 
has shown promise. The susceptibility of deep learning 
models to adversarial attacks, which can reduce the 
precision and dependability of their predictions, is a 
growing worry. Adversarial attacks entail the purposeful 
alteration of input data to trick machine learning 
algorithms and provide false results. Such attacks may 
have far-reaching effects on hydrogen production 
prediction, thereby compromising the efficiency, 
economic feasibility, and safety of processes. To address 
these concerns, we conducted an extensive investigation 
into the susceptibility of deep learning models used for 
hydrogen production prediction to adversarial attacks 
using the co-gasification of biomass and plastics 
datasets. In the co-gasification of biomass and plastics 
dataset, the dependent variable was the quantity of 

hydrogen generated, and the independent variables 
included the gasification temperature, high-density 
polyethylene (HDPE) and rubber seed shell (RSS) particle 
size, and the quantity of plastic in the final product. The 
implemented adversarial attacks include the limited-
memory broyden-fletcher-goldfarb-shanno (L-BFGS), 
fast gradient sign method (FGSM), basic iterative 
method, and projected gradient descent method (PGD). 
This study employed 4 machine learning regression 
models and a novel deep learning model based on Keras 
API to analyze the effect of the adversarial attack models 
under several perturbations including 0.1, 0.2, 0.4, 0.6 
and 0.8. From the yielded result, it was evident that the 
FGSM and PGD adversarial attack has a significant 
influence on the employed model prediction results 
while the L-BFGS and the basic iterative method yielded 
results that will be addressed in our future works. Our 
research highlights the potential risks of relying on these 
models for decision-making in hydrogen production 
processes while also revealing the vulnerabilities of deep 
learning models in this crucial domain. We also highlight 
the significance of developing defense mechanisms and 
security protocols to protect the integrity of deep 
learning-based predictions in this crucial sector. 
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NONMENCLATURE 

Abbreviations  

HDPE High-Density Polyethylene 
RSS Rubber Seed Shell 

L-BFGS 
Limited-Memory Broyden-Fletcher-
Goldfarb-Shanno 

FGSM Fast Gradient Sign Method 
PGD Projected Gradient Descent Method 
RFR Random Forest Regressor 
XGBoost Extreme Gradient Boosting 
SVR Support Vector Regressor 
KNN K-Nearest Neighbor  
RS Renewable Sources 
CO2 Carbon Dioxide 
CH4 Methane 
H2 Hydrogen Gas 
Ni/CaFe2O4 Nickel/Calcium Ferrite 
RBF Radial Basis Function 
MLP Multi-Layer Perceptron 
ANN Artificial Neural Network 
SEE Standard Error of Estimates 
CNN Convolutional Neural Networks 
GA Genetic Algorithms 
DT Decision Trees 
MAE Mean Absolute Error 
MSE Mean Square Error 
RMSE Root Mean Squared Error 
RMSLE Root Mean Squared Log Error 
R2 R-squared 

Symbols  

$ Dollar 
£ Pound 
mm Millimeter 
C Centigrade 
vol % Percentage in Volume 
wt % Weight in Volume 
kg Kilogram 

 

1. INTRODUCTION 
In recent times, there has been a growing emphasis 

on the quest for sustainable, cost-efficient, and long-
lasting energy sources, driven by the escalating global 
demand for energy[1–3]. With the projected global 
population reaching 10 billion by 2050, energy 
consumption is expected to witness a significant 
upsurge, underscoring the imperative for sustainable 
solutions. Although fossil fuels have historically fueled 
global economic growth, their adverse environmental 

impact is undeniable. Consequently, the scientific 
community is actively exploring alternative methods of 
energy production that have minimal or no detrimental 
effects on the environment[4–7]. As previously 
mentioned, hydrogen is generated from substances 
containing hydrogen, such as carbohydrates or water. It's 
important to note that a substantial 96% of the world's 
hydrogen production traditionally relies on fossil fuels. 
Specifically, 30% is derived from naphtha reforming, 48% 
from natural gas steam reforming, and 18% from coal 
gasification[8]. However, these conventional methods of 
hydrogen production are closely tied to the 
environmental challenges currently facing our planet. 
Hence, environmentalists and the energy sector are 
vigorously working to develop more environmentally 
friendly approaches to producing hydrogen, particularly 
using RS. 

Simultaneously, in the quest to convert carbon into 
sustainable energy sources like hydrogen and syngas, the 
utilization of plastics and biowastes holds the potential 
to reduce the environmental impact of industrial 
processes found in sectors such as iron, steel, and 
cement[9][10]. The co-gasification of mixtures 
containing plastic and biomass, achieved through dry 
and steam reforming of CO2, results in the production of 
H2, with factors such as feed composition and catalyst 
selection influencing the conversion of waste plastics 
into valuable fuel products[11–15]. Various variables, 
including temperature, the ratio of polymers to biomass, 
CO2/CH4 ratios, and the choice of catalyst, all contribute 
to the H2 production process[9][16]–[18]. Waste 
polymers like polyethylene and polypropylene exhibit 
low moisture and ash contents but possess high volatile 
content, viscosity, and heating value. Among these 
materials, polypropylene emerges as the most efficient 
for hydrogen production. However, when compared to 
biomass, which contains substantial quantities of 
hydrogen-rich molecules such as cellulose, 
hemicellulose, and lignin, polymers require more energy 
for gasification and yield less hydrogen[11][19]. 

While the fossil fuel and renewable energy sectors 
have traditionally been the main players in the 
production of green hydrogen, a third contender has 
now entered the arena. Green hydrogen derived from 
organic waste has emerged as a significantly more cost-
effective alternative to both fossil fuels and renewable 
energy sources, offering a carbon-negative solution. This 
form of green hydrogen, produced from diverse 
combinations of organic waste, has the potential to 
power mobile homes and remote hospitals that lack 
access to conventional electricity sources. In contrast, 
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the electrochemical method used to produce green 
hydrogen, which relies on substantial amounts of 
freshwater and renewable energy, is environmentally 
friendly and efficient in separating water into hydrogen 
and oxygen. The cost of producing green hydrogen from 
waste blends is estimated to be approximately $3 per 
kilogram, whereas utilizing solar or wind energy can cost 
roughly $11 to $16 per kilogram. Moreover, each tonne 
of dry waste can yield between 40 and 50 kg of green H2, 
although this yield may vary between 30 kg and 120 kg 
depending on the moisture content in the waste blends. 

Artificial intelligence techniques encompassing 
machine learning and deep learning algorithms have 
found valuable applications in tasks such as clustering, 
optimization, prediction, and classification within the 
domain of green hydrogen generation. These AI 
methodologies are instrumental in analyzing diverse 
data streams[11]. For instance, in Scotland, a real-time 
machine learning system is actively enhancing the 
production of green hydrogen by harnessing wind and 
tidal power[19]. To ensure the robustness and reliability 
of this system and facilitate data-driven decision-making, 
a cloud-based hydrogen management platform has been 
meticulously developed, integrating machine learning 
and optimization algorithms. This platform plays a 
pivotal role in identifying the most economically 
advantageous periods for hydrogen production and 
storage and has garnered £494,000 in support from the 
Department of Business, Energy, and Industrial Strategy. 
Consequently, the confidence and trust vested in 
decision-makers who employ machine learning models 
within specific domains are of utmost importance[20]. 
The enhancement of decision-making hinges on the 
ability to detect flaws and concealed biases within the 
operations of these models[21]. The utilization of 
artificial intelligence, particularly deep learning and 
machine learning models, in predicting hydrogen 
production brings to light the invaluable potential of 
these technologies. However, it is essential to 
acknowledge that as we delve deeper into AI's 
applications, particularly in critical domains like energy 
production, security concerns emerge as significant 
considerations. 

Machine/Deep learning models are subject to 
adversarial attacks (see Fig. 1), according to recent 
research findings, which can introduce errors into these 
models both during the training and testing stages[22]. A 
technique for producing adverse instances is an 
adversarial attack. An example that is intended to induce 
a machine learning model to predict incorrectly even if it 
would appear to be legitimate to a person is called an 

adversarial example. Dalvi et al.[23] performed the 
earliest inquiry into this phenomenon in the context of 
spam filtering. They discovered that minor changes to 
spam emails' text might readily fool a linear classifier 
without materially altering the spam message's 
readability. Adversarial examples that target linear 
classifiers were introduced in this work. Following the 
groundbreaking work of Krishevsky et al.[24], who 
showed the amazing effectiveness of CNNs in a large-
scale visual identification test, the interest in using deep 
learning models significantly increased. Szegedy et 
al.[25] described how deep neural networks, particularly 
in the computer vision field, are vulnerable to adversarial 
instances. 

 
Motivation: One pressing issue revolves around the 
susceptibility of deep learning models to adversarial 
attacks, which can have a detrimental impact on their 
performance and consequently affect the quality of the 
decisions made based on their predictions. These 
adversarial attacks can manipulate the input data in 
subtle ways to mislead the AI model, potentially leading 
to incorrect predictions or compromised outcomes in the 
context of hydrogen production. In light of these security 
concerns, it becomes imperative to not only harness the 
power of AI for enhancing the efficiency and 
sustainability of hydrogen production but also to fortify 
these systems against potential threats. This dual focus 
on leveraging AI's capabilities while safeguarding against 
vulnerabilities will be crucial in ensuring the reliability 
and resilience of AI-driven decisions in this critical sector. 

The aim of this study encompasses its examination 
of security concerns in hydrogen production prediction, 
its comparative study on adversarial attacks, its real-
world application in the energy sector, and its potential 
contributions to mitigation strategies, all of which 
enhance the understanding and practical 
implementation of AI in this critical domain. The 
following highlights the major contribution of this 
manuscript; 
❖ Exploring Security Implications in Hydrogen 

Production Prediction 
❖ Conducts a comparative study using several machine 

learning models and a novel deep learning model for 
predicting hydrogen prediction. 

 
Fig. 1 Example of adversarial attack on numerical data 
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❖ Conducts a comparative study on adversarial attacks 
specifically tailored to Machine learning models used 
in hydrogen production prediction. 

❖ Finally, this study offers insights into potential 
mitigation strategies for securing deep learning 
models in hydrogen production prediction. 
 The structure of this paper comprises several 

sections. Section 2 delves into the studies related to the 
topic. The third section provides a detailed account of 
the comprehensive workflow and introduces the 
proposed model. Section 4 presents the outcomes of our 
experiments, engaging in discussions and identifying the 
limitations and future works. Finally, in Section 5, we 
conclude our work. 

2. RELATED WORKS  
    The scientific investigation into predicting hydrogen 
production has yielded only a scant number of 
responses. The research community has conducted 
comprehensive inquiries into issues related to hydrogen 
production[26–29]. Furthermore, various methods and 
solutions for producing eco-friendly hydrogen via 
biological, chemical, or physical processes have been 
proposed. For instance, Nicolas et al.[30] probed the 
potential of generating eco-friendly hydrogen from 
bioethanol using nanocatalyst design. In the quest for 
eco-friendly hydrogen from seawater, Rafaeld'Amore-
Domenech et al.[31] explored and compared four 
electrolysis techniques. Scarce literature addresses the 
prediction of hydrogen production. In Islamabad, Syed et 
al.[32] delved into a machine-learning algorithm to 
forecast hydrogen production from solar energy. 
Artificial intelligence, a tool of green technology, has the 
potential to facilitate the creation of eco-friendly 
hydrogen using diverse methods and resources. One 
widely used approach is methane drying and reforming, 
which employs machine and deep learning models to 
predict eco-friendly hydrogen generation based on 
various catalysts. Victor et al.[33] evaluated the Bayesian 
regularization algorithm, the Leven-Marquardt 
algorithm, and a scaled conjugate gradient algorithm as 
training algorithms for an ANN prediction model to 
estimate the quantities of CO and H2 produced by the 
methane drying and reforming process. The empirical 
findings favored the Bayesian regularization technique, 
which exhibited the lowest SEE compared to the other 
methods. Hossain et al.[34] scrutinized the effectiveness 
of two ANN models in forecasting hydrogen-rich syngas 
generation from methane drying and reforming using 
advanced Ni/CaFe2O4 catalysts. The experiments' results 
were trained and validated using RBF and MLP neural 

network models, with the ANN-MLP-based approach 
outperforming the ANN-RBF-based approach in 
predicting hydrogen-rich syngas production. 

To predict the overall hydrogen output from thermo-
catalytic methane reforming, May et al.[35] assessed the 
performance of two deep learning models: one 
employing Bayesian regularization and another trained 
with the Levenberg-Marquardt method for a multilayer 
perceptron neural network. The experimental findings 
demonstrated that the Levenberg-Marquardt-trained 
neural network, configured as 7-16-1, outperformed the 
Bayesian regularization-trained network in forecasting 
green hydrogen production rates. Additionally, various 
ANN models were utilized, evaluated, and compared to 
forecast green hydrogen production[36]. Alternatively, a 
different approach involves producing green hydrogen 
through oxygen injection and hydrocarbon tanks 
submerged in water. In their work, Klemens et al.[37] 
introduced a data-centric AI system aimed at enhancing 
green hydrogen production within hydrocarbon 
reservoirs submerged in water. Their study represents a 
pioneering effort to improve oxygen injection techniques 
while optimizing hydrogen generation using an AI-based 
genetic optimization framework. Generating hydrogen 
from organic waste is considered one of the most 
prominent and cost-effective methods[37–40]. 
Nevertheless, the existing body of literature lacks an 
adequate number of AI models designed to strategize 
and enhance green hydrogen production from waste 
sources. Recent investigations[41][42] have 
concentrated on leveraging machine learning algorithms 
to maximize hydrogen generation from wastewater and 
sewage sludge. Hao-nan et al.[43] examined the 
application of five machine learning methods, including 
ANN, SVM, GA, DT, and RF to predict organic solid waste 
treatment outcomes. Their analysis was based on 
reviewing published papers from 2003 to 2020. It's worth 
noting that this study did not specifically address the 
application of these machine-learning methods for 
generating hydrogen from organic solid waste. This 
research holds significance due to the identified 
knowledge gap in this particular domain. 

 
3. MATERIAL AND METHODS  

3.1 Adversarial Attack 

    The following Adversarial attacks were 
implemented in this paper including the L-BFGS, FGSM, 
Basic Iterative Method, and PGD [44]. The PGD method 
is one of the most effective adversarial Attack techniques 
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which produces adversarial samples quickly and simply 
and is mathematically expressed as; 

      𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥, 𝑦𝑡𝑟𝑢𝑒))               (1) 

 𝑥𝑎𝑑𝑣  is the perturbed adversarial sample, 

(𝐿(∙))  is the classification loss function, ∇𝑥𝐿  is the 

gradient concerning the unperturbed sample (𝑥), is the 
𝐷𝐿 model weights, and (𝑦𝑡𝑟𝑢𝑒) is the true label, where 
is the magnitude of the perturbation that limits the 
amount of perturbation allowed in each pixel of an 
image. The L-BFGS creates an adversarial example using 
the least probable predicted class of a rained network for 
a certain data sample; 
 𝑦𝐿𝐿 = 𝑎𝑟𝑔𝑦𝑚𝑖𝑛{𝑝(𝑦𝑡𝑟𝑢𝑒|𝑥)}     (2) 

 Where 𝑎𝑟𝑔𝑦𝑚𝑖𝑛{𝑝(𝑦𝑡𝑟𝑢𝑒|𝑥)}  is the minimal 

probability that the provided data sample (𝑥) has the 
true label 𝑦𝑡𝑟𝑢𝑒. PGD is an extension of FGSM and one 
of the most powerful first-order attack strategies. It 
repeatedly tries to create an ideal perturbation from a 
randomly chosen point inside an L-∞ ball, which 
establishes a region with a radius typically equal to 
epsilon around the original data point. Equation (3) 
depicts how the PGD iterates: 

   𝑥𝑡+1 = ∏ (𝑥𝑡 + 𝛼𝑠𝑖𝑔𝑛 (∇𝑥𝑙(𝜃, 𝑥, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)))𝑥+𝑠  (3) 

 Where 𝑄(·)  is the projection function to 
project adversarial instances back onto the L-∞ ball after 
each iteration, 𝑥𝑡 is the adversarial example at the 𝑡 −
𝑡ℎ iteration, α is the step size, and θ is the DL model 
weights. 

3.2 Machine Learning Models 

    For the experiments, we selected four machine 
learning regression models including the SVR, XGBoost, 
RF and KNN. This study went further to develop a novel 
ANN model based on Keras API to support our 
study[45][46].  
❖ RF: In the context of supervised learning, a RF is a 

potent machine learning method used for regression 
problems. It is an ensemble learning technique that 
integrates many decision tree regressors to provide 
precise regression predictions while reducing 
overfitting as shown in Fig. 2. 

❖ XGBoost: is an efficient supervised machine learning 
approach for regression problems. Due to its 
remarkable performance and adaptability in 
handling complicated datasets, it is a preferred 
choice for numerous data-driven applications, from 
finance to healthcare. Decision trees are used to 
enhance prediction accuracy as illustrated in Fig. 3. 

 

 

 
❖ SVR: SVM is a powerful supervised machine learning 

algorithm used for classification and regression 
tasks. It works by finding the optimal hyperplane that 
best separates data points belonging to different 
classes in a high-dimensional space. The key idea is 
to identify support vectors, which are the data points 
closest to the decision boundary, and use them to 
maximize the margin between classes as seen in Fig. 
4. 

 
Fig. 2 Basic structure of the RL regressor 

 
Fig. 3 Basic structure of the XGBoost regressor 

 
Fig. 4 Basic structure of the SVR 
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❖ K-NN: To forecast or categorize specific data points, 

the k-NN model, an irregular supervised learning 
classifier, depends on closeness. It is adaptable and 
may be used for problems involving classification and 
regression. In classification, it chooses the class label 
that is most commonly present among a particular 
data point's closest neighbors based on a majority 
vote. To predict a classification in regression, the 
average of the KNN is calculated as seen in Fig 5. 

3.3 Proposed Model 

A novel deep learning model based on the Keras 
sequential model is proposed to further assess the effect 
of the adversarial attack in hydrogen production 
prediction as shown in Figures 6 and 7. This model is 
composed of interconnected nodes, or neurons, 
organized into layers. Information flows through these 
layers, starting with an input layer, passing through 
hidden layers, and concluding with an output layer. Each 
connection between neurons has a weight that adjusts 
during training, allowing the network to learn patterns 
and make predictions. 

 

Our architecture's input layer is made up of four 
features: gasification temperature, RSS particle size, 
HDPE, and the volume of plastic in the mixture. The input 
layer of the model has an architecture of [16, 3, 1] with 
30 rows of data and 4 independent variables. The output 
layer does not get an activation function as it's a 

regression problem aimed at predicting numerical values 
directly. By promoting weight decay toward zero, the L2 
regularization is used to prevent overfitting. The Adam 
optimizer, MSE loss, MAE, and other metrics are used to 
build the model. A batch size of 2, 3000 epochs, and a 
verbose output setting of 1 are used during training. 

 

3.4 Dataset 
    The study's dataset was based on the research from 
Chin et al.[47]. In statistics, a sample size of 30 is typical. 
A population data set's confidence interval can be 
increased by a factor of 30 to support claims that the 
result is false[48]. The dataset consists of 30 
experimental runs, with gasification temperature, RSS, 
and HDPE particle size, the volume of plastic in the 
mixture acting as independent variables, and the volume 
of hydrogen produced acting as the dependent variable 
(Table 1). A larger sample size, however, has a better 
likelihood of being representative of the population at 
hand. According to statisticians, a sample size of 30 is 
enough for the majority of distributions. 

Table 1. Description of the hydrogen production data 

Temperature 

(C) 

RSS 

Particle 

Size 

(mm) 

HDPE 

Particle 

Size (mm) 

Percentage of 

Plastics in 

Mixture (wt%) 

H2 (vol 

%) 

800 0.25 0.25 10 46.676 

700 0.125 0.375 20 50.123 

600 0.5 0.25 30 47.751 

800 0.5 0.25 10 45.952 

500 0.375 0.375 20 44.781 

700 0.375 0.625 20 43.031 

600 0.5 0.25 10 45.324 

900 0.375 0.375 20 49.23 

800 0.5 0.5 30 44.355 

600 0.5 0.5 30 44.208 

700 0.375 0.375 0 44.466 

700 0.375 0.375 40 46.603 

700 0.625 0.375 20 43.072 

800 0.25 0.5 30 47.396 

700 0.375 0.375 20 39.98 

800 0.25 0.25 10 46.338 

700 0.375 0.375 20 38.569 

 
Fig. 5 Basic structure of the KNN Regressor 

 
Fig. 6 Basic structure of the proposed model 

 
Fig. 7 Proposed model summary 
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700 0.375 0.375 20 49.868 

800 0.25 0.25 30 46.545 

700 0.375 0.375 20 38.612 

600 0.5 0.5 10 41.032 

700 0.375 0.375 20 38.625 

600 0.25 0.5 30 47.123 

700 0.375 0.375 20 38.621 

600 0.25 0.25 10 48.634 

800 0.5 0.25 30 48.475 

600 0.25 0.5 10 48.132 

700 0.375 0.375 20 39.262 

600 0.25 0.25 30 46.502 

800 0.5 0.5 10 41.93 

3.5 Evaluation Metrics 
This paper made use 5 evaluation metrics namely 

the MAE, MSE, RMSE, RMSLE, R2. By dividing the total 

number of observations by the sum of all errors, the MAE 

determines the exact difference between the actual and 

anticipated values mathematically represented as 

  MAE =
1

n
∑ (Yi − Ŷi)

n
i=1       (4) 

where 𝑛  = number of samples, 𝑌𝑖 = observed 

values and 𝑌̂𝑖= predicted values. The squared variation 

in the actual and anticipated value is known as the mean 

squared error mathematically represented as; 

       MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1      (5) 

The RMSE corresponds to the square root of the 

average squared error, and its measurement unit aligns 

with that of the dependent variable. 

      RMSE = √
1

n
∑ (Yi − Ŷi)

2n
i=1           (6)        

RMSLE = √1

n
∑ (log(Yi + 1 ) − log(Ŷi + 1))

2
n
i=1   (7) 

R2 also known as the Coefficient of Determination 

or Fit Quality, measures how much better the 

performance of the regression line is than a simple mean 

line. It is dimensionless, analyzes model performance in 

every situation, and consistently produces numbers 

below one. it is mathematically represented below as; 

R2 = 1 −
sum squared regression (SSR)

total sum of squares (SST)
= 1 −  

∑(Yi−Ŷi)
2

∑(Yi−Y̅)2 (8) 

4. RESULTS AND ANALYSIS 
For the machine learning models, we used the Grid 

search method to select their optimal hyperparameters 
for the training as depicted in Table 2. Furthermore, we 
used the boxplot to depict the inherent properties of the 
features of the dataset 

 

Table 2. Training hyperparameter of the ml models 

ML Model Optimal Hyperparameter 

RFR 
Nos. of  estimators = 30, random state = 
100 

XGB Regressor 

Base score = 0.5,  learning rate = 0.200, 
nos. of estimators = 50,  max depth = 12, 
gamma = 0.7, alpha = 0.7, random state = 
42 

SVR Kernel = ’rbf’, random seed = 42 
K-NN Regressor Nos. neighbors =  4 

Table 3. Descriptive statistics hydrogen production data 

 
Temperature 

(C) 

RSS 
Particle 

Size 
(mm) 

HDPE 
Particle 

Size 
(mm) 

% of 
Plastics in 
Mixture 
(wt%) 

H2 (vol 
%) 

count 30.0000 30.0000 30.0000 30.0000 30.0000 

mean 0.7778 0.6000 0.6000 0.5000 44.7072 

std 0.1011 0.1819 0.1661 0.2274 3.6519 

min 0.555556 0.2000 0.4000 0.0000 38.5690 

25% 0.666667 0.4000 0.4000 0.2500 42.2053 

50% 0.777778 0.6000 0.6000 0.5000 45.6380 

75% 0.888889 0.8000 0.7500 0.7500 47.3278 

max 1.000000 1.0000 1.0000 1.0000 50.1230 

 

 
Table 3 shows the descriptive statistics of the 

employed dataset. To illustrate the data distribution, 
spot potential outliers, and gauge the range of values in 
each of the designated columns, we employed boxplots 
(Fig. 8 - Fig. 11) Boxplots offer a clear and succinct 

 
Fig. 8 Temperature vs. H2 

 
Fig. 9 RSS particle size vs. H2 
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representation of the most important statistical facts 
about a dataset, such as the median, quartiles, and any 
possible outliers. The boxplot displays the values in the 
chosen column's distribution on the x-axis and "H2 
(vol%)" on the y-axis, which may be important for making 
data-driven choices or seeing patterns and trends in the 
data. 

 

 

4.1 Result Analysis 
In this section, we present the results obtained from 

our analysis. 
Table 4. Results 

Model MAE MSE RMSE R2 MSLE RMSLE 

RFR  2.516 8.946 2.991 0.285 0.004 0.066 

XGBoost 2.880 12.266 3.502 0.020 0.006 0.077 

SVR 3.361 12.809 3.579 
-

0.024 
0..006 0.080 

KNN 3.266 11.564 3.401 0.076 0.006 0.075 

Proposed 
Model 

1.775 5.488 2.323 0.459 0.003 0.053 

From Table 4, RFR has the lowest MAE, MSE, and 
RMSE among the models, indicating it performs the best 
in terms of accuracy and error metrics. However, its R2 is 
relatively low, suggesting that it doesn't explain a 
significant portion of the variance in the data. XGBoost 

has higher errors (MAE, MSE, RMSE) and a very low R2, 
indicating poorer performance compared to Random 
Forest. SVR performs slightly worse than XGBoost in 
terms of error metrics and has a negative R2, suggesting 
it doesn't fit the data well. KNN falls in between RFR and 
XGBoost in terms of error metrics and R2.  

 

 

 
The Proposed Model outperforms all the other 

models in terms of MAE, MSE, RMSE, and R2. It has the 
lowest error values and the highest R2, indicating it 
provides the most accurate predictions and explains a 
significant portion of the data's variance. It also has the 
lowest MSLE and RMSLE, suggesting that it handles the 
data's wide range and potential skewness well.Fig. 12 – 
Fig. 15 illustrates the machine learning model prediction 

 
Fig. 10 HDPE particle size vs. H2 

 
Fig. 11 % of plastics in mixture vs. H2 

 
Fig. 12 RRF prediction 

 
Fig. 13 XGBoost regessor prediction 

 
Fig. 14 SVR prediction 
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vs. the actual result. The proposed model result is shown 
in Figure 16. 

 

 

4.2 Adversarial Attack Analysis 
In this section, explore the effects of the L-BFGS, 

FGSM, Basic Iterative Method, and PGD on the hydrogen 
production prediction. These adversarial attacks are all 
white box attacks because they rely on access to the 
model's internal information, such as gradients or model 
parameters. However, they can be adapted to black-box 
scenarios with some modifications, but their 
effectiveness might be reduced. We used an epsilon 
range of 0.1, 0.2, 0.4, 0.6, and 0.8 in our experiments. 
Table 5 to Table 9 demonstrate the achieved results. 
from the obtained results, it was evident that the FGSM 
and the PGD Adversarial Attack had a significant effect on the 

predicted results of the implemented models. 

Table 5. Effects of the FGSM attack  

Model 
Pertur

bation 
MAE MSE RMSE R2 MSLE RMSLE 

RF 

- 2.516 8.946 2.991 0.285 0.004 0.066 

0.1 2.530 9.653 2.991 0.229 0.005 0.069 

0.2 3.283 15.718 2.991 -0.256 0.008 0.089 

0.4 3.612 15.566 2.991 -0.244 0.008 0.089 

0.6 3.361 14.366 2.991 -0.148 0.007 0.086 

0.8 3.361 14.412 2.991 -0.152 0.007 0.086 

XGB 
- 2.880 12.266 3.502 0.020 0.006 0.077 

0.1 2.880 12.266 3.502 0.020 0.006 0.077 

0.2 3.479 15.562 3.502 -0.243 0.008 0.087 

0.4 3.730 16.455 3.502 -0.315 0.008 0.091 

0.6 3.356 13.536 3.502 -0.082 0.007 0.081 

0.8 3.361 13.557 3.502 -0.083 0.007 0.083 

SVM 

- 3.361 12.809 3.579 
-

0.024 
0..006 0.080 

0.1 3.375 12.802 3.579 -0.023 0.006 0.080 

0.2 3.384 12.819 3.579 -0.024 0.006 0.080 

0.4 3.390 12.985 3.579 -0.038 0.007 0.081 

0.6 3.391 13.343 3.579 -0.066 0.007 0.083 

0.8 3.390 13.831 3.579 -0.105 0.007 0.084 

KNN 

- 3.266 11.564 3.401 0.076 0.006 0.075 

0.1 4.027 18.834 3.401 -0.505 0.009 0.096 

0.2 4.693 23.963 3.401 -0.915 0.012 0.110 

0.4 3.140 12.854 3.401 -0.027 0.007 0.081 

0.6 2.755 11.798 3.401 0.057 0.006 0.078 

0.8 3.361 13.698 3.401 -0.095 0.007 0.083 

P. 

Model 

- 1.775 5.488 2.323 0.459 0.003 0.053 

0.1 2.056 6.454 2.342 0.363 0.003 0.057 

0.2 2.267 7.704 2.343 0.240 0.004 0.061 

0.4 3.464 13.605 2.343 -0.342 0.007 0.082 

0.6 4.612 23.277 2.343 -1.296 0.011 0.107 

0.8 4.737 27.057 2.343 -1.669 0.013 0.114 

Table 6. Effects of the PGD adversarial attack  

Model 
Pertur

bation 
MAE MSE RMSE R2 MSLE RMSLE 

RL 

 

- 2.516 8.946 2.991 0.285 0.004 0.066 

0.1 2.530 9.653 2.991 0.229 0.005 0.069 

0.2 3.283 15.718 2.991 -0.256 0.008 0.089 

0.4 3.612 15.566 2.991 -0.244 0.008 0.089 

0.6 3.361 14.366 2.991 -0.148 0.007 0.086 

0.8 3.361 14.412 2.991 -0.152 0.007 0.086 

XGB 

 

- 2.880 12.266 3.502 0.020 0.006 0.077 

0.1 2.880 12.266 3.502 0.020 0.006 0.077 

0.2 3.479 15.562 3.502 -0.243 0.008 0.087 

0.4 3.730 16.455 3.502 -0.315 0.008 0.091 

0.6 3.356 13.536 3.502 -0.082 0.007 0.083 

0.8 3.361 13.557 3.502 -0.083 0.007 0.083 

SVM 

 

- 3.361 12.809 3.579 -0.024 
0..00

6 
0.080 

0.1 3.375 12.802 3.579 -0.023 0.006 0.080 

0.2 3.384 12.819 3.579 -0.024 0.006 0.080 

0.4 3.390 12.985 3.579 -0.038 0.007 0.081 

0.6 3.391 13.343 3.579 -0.66 0.007 0.083 

0.8 3.390 13.831 3.579 -0.105 0.007 0.084 

KNN 

 

- 3.266 11.564 3.401 0.076 0.006 0.075 

0.1 4.027 18.834 3.401 -0.505 0.009 0.096 

0.2 4.693 23.963 3,401 -0.915 0.012 0.110 

0.4 3.140 12.854 3.401 -0.027 0.007 0.081 

0.6 2.755 11.798 3.401 0.057 0.006 0.078 

0.8 3.361 13.698 3.401 -0.095 0.007 0.083 

P. 

Model 

 

- 1.775 5.488 2.323 0.459 0.003 0.053 

0.1 2.056 6.454 2.343 0.363 0..003 0.057 

0.2 2.267 7.704 2.343 0.240 0.004 0.061 

0.4 3.464 13.606 2.343 -0.342 0.007 0.082 

 
Fig. 15 K-NN regessor prediction 

 
Fig. 16 Proposed model prediction 
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0.6 4.612 23.277 2.343 -1.296 0.011 0.107 

0.8 5.134 34.627 2.343 -2.416 0.016 0.128 

Table 7. Effects of the L-BFGS adversarial attack  

Model 
Pertur

bation 
MAE MSE RMSE R2 MSLE RMSLE 

RL 

 

- 2.516 8.946 2.991 0.285 0.004 0.066 

0.1 2.516 8.946 2.991 0.285 0.004 0.066 

0.2 2.516 8.946 2.991 0.285 0.004 0.066 

0.4 2.516 8.946 2.991 0.285 0.004 0.066 

0.6 2.516 8.946 2.991 0.285 0.004 0.066 

0.8 2.516 8.946 2.991 0.285 0.004 0.066 

XGB 

 

- 2.880 12.266 3.502 0.020 0.006 0.077 

0.1 2.880 12.266 3.502 0.020 0.006 0.077 

0.2 2.880 12.266 3.502 0.020 0.006 0.077 

0.4 2.880 12.266 3.502 0.020 0.006 0.077 

0.6 2.880 12.266 3.502 0.020 0.006 0.077 

0.8 2.880 12.266 3.502 0.020 0.006 0.077 

SVM 

 

- 3.361 12.809 3.579 -0.024 0..006 0.080 

0.1 3.361 12.809 3.579 -0.024 0..006 0.080 

0.2 3.361 12.809 3.579 -0.024 0..006 0.080 

0.4 3.361 12.809 3.579 -0.024 0..006 0.080 

0.6 3.361 12.809 3.579 -0.024 0..006 0.080 

0.8 3.361 12.809 3.579 -0.024 0..006 0.080 

KNN 

 

- 3.266 11.564 3.401 0.076 0.006 0.075 

0.1 3.266 11.564 3.401 0.076 0.006 0.075 

0.2 3.266 11.564 3.401 0.076 0.006 0.075 

0.4 3.266 11.564 3.401 0.076 0.006 0.075 

0.6 3.266 11.564 3.401 0.076 0.006 0.075 

0.8 3.266 11.564 3.401 0.076 0.006 0.075 

P. 

Model 

 

- 1.775 5.488 2.323 0.459 0.003 0.053 

0.1 1.775 5.488 2.323 0.459 0.003 0.053 

0.2 1.775 5.488 2.323 0.459 0.003 0.053 

0.4 1.775 5.488 2.323 0.459 0.003 0.053 

0.6 1.775 5.488 2.323 0.459 0.003 0.053 

0.8 1.775 5.488 2.323 0.459 0.003 0.053 

Table 8. Effects of the basic iterative method adversarial attack  

Model 
Pertur

bation 
MAE MSE RMSE R2 MSLE RMSLE 

RL 

 

- 2.516 8.946 2.991 0.285 0.004 0.066 

0.1 2.516 8.946 2.991 0.285 0.004 0.066 

0.2 2.516 8.946 2.991 0.285 0.004 0.066 

0.4 2.516 8.946 2.991 0.285 0.004 0.066 

0.6 2.516 8.946 2.991 0.285 0.004 0.066 

0.8 2.516 8.946 2.991 0.285 0.004 0.066 

XGB 

 

- 2.880 12.266 3.502 0.020 0.006 0.077 

0.1 2.880 12.266 3.502 0.020 0.006 0.077 

0.2 2.880 12.266 3.502 0.020 0.006 0.077 

0.4 2.880 12.266 3.502 0.020 0.006 0.077 

0.6 2.880 12.266 3.502 0.020 0.006 0.077 

0.8 2.880 12.266 3.502 0.020 0.006 0.077 

SVM - 3.361 12.809 3.579 -0.024 0..006 0.080 

 0.1 3.361 12.809 3.579 -0.024 0..006 0.080 

0.2 3.361 12.809 3.579 -0.024 0..006 0.080 

0.4 3.361 12.809 3.579 -0.024 0..006 0.080 

0.6 3.361 12.809 3.579 -0.024 0..006 0.080 

0.8 3.361 12.809 3.579 -0.024 0..006 0.080 

KNN 

 

- 3.266 11.564 3.401 0.076 0.006 0.075 

0.1 3.266 11.564 3.401 0.076 0.006 0.075 

0.2 3.266 11.564 3.401 0.076 0.006 0.075 

0.4 3.266 11.564 3.401 0.076 0.006 0.075 

0.6 3.266 11.564 3.401 0.076 0.006 0.075 

0.8 3.266 11.564 3.401 0.076 0.006 0.075 

P. 

Model 

- 1.775 5.488 2.323 0.459 0.003 0.053 

0.1 1.775 5.488 2.323 0.459 0.003 0.053 

0.2 1.775 5.488 2.323 0.459 0.003 0.053 

0.4 1.775 5.488 2.323 0.459 0.003 0.053 

0.6 1.775 5.488 2.323 0.459 0.003 0.053 

0.8 1.775 5.488 2.323 0.459 0.003 0.053 

4.3 Result Discussions 
As seen in Table 5, the results indicate that all models 

tested are vulnerable to FGSM adversarial attacks, as 
evidenced by the degradation in performance metrics 
with increasing perturbation. The severity of the 
vulnerability varies among models, with some models 
(e.g., Proposed Model) being more sensitive than others. 
For the Random Forest Regression model, the MAE, MSE, 
and RMSE increase slightly with higher perturbation 
values, indicating that the model's performance 
degrades as the perturbation increases. R2 values are 
negative, suggesting that the model's predictions are 
worse than simply using the mean of the target values. 
Similar to Random Forest, XGBoost shows a decrease in 
performance with increasing perturbation. The R2 values 
are also negative, indicating poor predictive 
performance. The SVR model also exhibits a decline in 
performance as perturbation increases. R2 values are 
negative. KNN performs relatively better, with higher R2 
values compared to the previous models. However, it still 
shows a decrease in performance as perturbation 
increases. The proposed model initially performs well 
with low perturbation but experiences a significant drop 
in R2 values as perturbation increases. This suggests that 
the proposed model is sensitive to adversarial attacks. 

Table 6 indicates that all tested models are 
vulnerable to PGD adversarial attacks. As the 
perturbation level increases, the models' predictive 
performance deteriorates, as reflected in higher error 
metrics and negative R2 values. For the RFR, the MAE, 
MSE, and RMSE increase as the perturbation level 
(epsilon) increases, indicating that the model's 
performance degrades with stronger attacks. R2 values 
are mostly negative, suggesting poor predictive 
performance. This indicates that the RFR is vulnerable to 
PGD attacks. Similar to RFR, XGBoost exhibits a decrease 
in performance as the perturbation level increases. R2 
values are also negative, indicating that the model's 
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predictions deteriorate under stronger attacks. SVR 
follows a similar pattern, with a decrease in performance 
as the perturbation level increases. R2 values remain 
negative. KNN initially performs reasonably well with low 
perturbation but shows a significant drop in R2 values as 
the attack strength increases. This suggests that KNN is 
also vulnerable to PGD attacks. The proposed model 
follows a similar pattern as the other models, with a 
decrease in performance as perturbation increases. The 
R2 values are negative for stronger attacks. 

Table 7 and Table 8 shows that the L-BFGS and the 
Basic Iterative Method of Adversarial attack had no 
influence on the predicted results and yielded the same 
result on all perturbation. This indicates an unusual 
scenario and can be caused by several factors such as 
data entry error, Incorrect Implementation, the dataset 
(If the dataset used for the experiments is highly 
structured or has some unique characteristics), lack of 
diversity in models and data, etc. which will be looked 
into our future work. In conclusion, the recorded results 
highlight the importance of implementing robustness 
techniques and defenses against adversarial attacks in 
machine learning models to mitigate their susceptibility 
to such attacks. 

4.4 Limitations and Future Works 
From the recorded results we can see that the 

experimented dataset is few and for deep learning 
models' optimal performance, a large dataset for training 
is needed. Hence data augmentation will be looked into 
in our next study. Secondly, Table 7 and Table 8 shows 
that the L-BFGS and the basic iterative method of 
adversarial attack had no influence on the predicted 
results and yielded the same result on all perturbation 
which is unusual. Further study will include analyzing the 
reason why the results are the same. Lastly, the 
adversarial attacks implemented are all white box 
attacks, this study will further look into the effect of the 
black box attack on machine learning models for 
predicting hydrogen production.  

5. CONCLUSION 
Our investigation revealed that FGSM and PGD 

adversarial attacks had a significant impact on the 
predictive performance of the employed machine 
learning regression models. These attacks resulted in a 
degradation of performance metrics, with increasing 
perturbation levels. The severity of vulnerability varied 
among models, with the Proposed Model being 
particularly sensitive to adversarial attacks. For the RFR, 
as perturbation increased, the MAE, MSE, and RMSE all 
increased, indicating deteriorating performance. 

Negative R2 values suggested that the model's 
predictions became worse than using the mean of the 
target values. XGBoost and SVM models displayed similar 
patterns of vulnerability, with negative R2 values 
indicating poor predictive performance under stronger 
attacks. KNN initially performed better but still exhibited 
sensitivity to PGD attacks. 

Our findings underscore the importance of 
developing defense mechanisms and security protocols 
to protect the integrity of deep learning-based 
predictions in the critical domain of hydrogen 
production. Furthermore, they highlight the potential 
risks associated with relying on these models for 
decision-making in hydrogen production processes. 
Robustness techniques must be implemented to 
mitigate the susceptibility of these models to adversarial 
attacks. An intriguing aspect of our study was the 
identical results obtained from the L-BFGS and Basic 
Iterative Method attacks across all perturbation levels 
and models. This unusual scenario calls for further 
investigation into potential factors, such as data entry 
errors, incorrect implementations, dataset 
characteristics, and model diversity, which may have 
contributed to this unexpected outcome.  
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