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ABSTRACT 
  Working temperature is a key issue that affects 

the performance of proton exchange membrane fuel 
cells (PEMFCs). Proper thermal management can 
improve the PEMFC output performance and longevity. 
To deal with the problems of poor robustness and slow 
response time of traditional temperature control curves, 
this paper establishes a dynamic temperature model of 
PEMFC. It proposes a particle swarm optimized fuzzy 
proportional-integral-derivative (PSO-Fuzzy-PID)-based 
temperature control strategy to achieve dynamic control 
of the electric reactor temperature. The performance of 
PSO-Fuzzy-PID temperature control is verified for step 
load, dynamic load, and variable target conditions, and 
its effectiveness is compared with that of an ordinary PID 
controller. The results show that the proposed method 
has the advantages of fast convergence speed, good 
dynamic performance, and strong disturbance immunity. 
The PSO-Fuzzy-PID temperature controller ensures 
temperature fluctuations within 0.5°C of dynamic 
perturbations and is capable of strong tracking control of 
variable targets. 
 
Keywords: PEMFC, Temperature management, Thermal 
model, Particle Swarm Optimization Fuzzy Control 
 

NONMENCLATURE 

Abbreviations  

PEMFCs 
Proton exchange membrane fuel 
cells  

PID Proportional-integral-derivative 
PSO Particle swarm optimization 

FC Fuel cell 

Symbols  

E The Nernst voltage  
Vact The activation voltage loss 
Vconc The concentration voltage loss 
Vohm The ohmic voltage loss 
Tf The working temperature of the FC 
Vf The output voltage 

2HP  The partial pressures of hydrogen 

2OP  The partial pressures of oxygen 

P Stack pressure 

1 4-   Empirical coefficient 

If Working Current 
Aac Active area 

2OC  The concentration of O2 

  The membrane water content 
rm The resistivity of the membrane 
tm Membrane thickness 
Rm Membrane resistance 
Rc The leads’ ohmic resistance 
Ii Current density 
Iimax Maximum current density 

Qtot 
Total power of electrochemical 
Reaction 

N Cell number 

Pst 
The output electrical power of the 
Stack 

Qgas 
The thermal power from anode and 
cathode reactants 

Qcl 
Thermal power discharge through 
the cooling 
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Qamb 
The thermal power radiated 
outwards from the stack 

mf The mass of the stack 
F The Faraday's constant 

Cw 
The constant pressure specific heat 
capacity of cooling water 

Tin 
The cool water temperature into the 
stack 

Kp Proportionality coefficient 
Ki Integration coefficient 
Kd Differentiation coefficient 
Δe  Amount of error variation 
ec The rate of change of error 
t Time 

s  The start inertia weight 

e  The inertia weight 

km Maximum number of iterations 
kn The current number of iterations 

 

1. INTRODUCTION 
In a world where energy crises and environmental 

issues are a major concern, it is essential to discover 
clean and efficient energy solutions. The proton 
exchange membrane fuel cell (PEMFC) is a cutting-edge 
technology that has gained wide-ranging attention, 
especially in the new energy vehicle industry, due to its 
high efficiency, zero greenhouse gas emissions, low 
noise, and high specific power [1]. PEMFC reactors' 
efficiency and lifetime are mainly affected by the 
operating temperature, water content of the proton 
exchange membrane, and the partial pressure of the 
reaction gas [2]. Control of the operating temperature is 
essential to maintain cell performance. Effective thermal 
management and control of the stack is crucial to ensure 
stable operation and prolong its service life, especially in 
practical applications like PEMFC vehicles where 
batteries often face load variations that cause 
temperature fluctuations. 

Several researchers have explored and proposed 
various methods for controlling the temperature of 
PEMFC, including an adaptive sparrow search algorithm 
[4] by Zhu et al. for PEMFC control model parameter 
identification, model reference adaptive control (MRAC) 
[5], model predictive control [7], artificial neural network 
control [8], and deep learning [9]. Wang et al. [6] 
established three-dimensional fuzzy control rules to 
regulate the temperature of PEMFC, and their 
experimental and simulation results indicate that the 
three-dimensional fuzzy control method has a strong 
regulation ability and low static error. 

Two issues need to be resolved in the thermal 
management control strategy. Firstly, the traditional 
controller is not robust enough due to the nonlinear 
characteristics of the thermal management model 
system. Secondly, fuzzy controllers are complex and 
time-consuming to tune. Effective control algorithms for 
PEFC temperature regulation are lacking and more 
robust control methods are needed. This paper proposes 
a particle swarm optimization fuzzy control strategy 
based on real-time optimization of PID parameters to 
regulate the temperature of the power reactor by 
controlling the cooling water flow and achieve dynamic 
control of the temperature.  

2. SYSTEM DESCRIPTION AND MODEL BUILDING  

2.1 Thermal management system structure 

In order to manage the temperature of an 80kW 
PEMFC power stack, a thermal management model has 
been established as shown in Figure 1. The thermal 
management model was established after experimental 
verification, And the parameters of the model are listed 
in Table 1. 

 
Table 1 The stack parameters 

Parameter Value (Unit) 

Number of cells 330 
Active area 282 (cm2) 
Partial pressure of hydrogen 1 (atm) 
Partial pressure of oxygen 1 (atm) 
Anode channel volume 0.008 (m3) 
Cathode channel volume 
Rated power  
Maximum power  
Operation Temperature 
Environment temperature 
PEM thickness 

0.014 (m3) 
80 (kW) 
80.5 (kW) 
50-80 (°C) 
25 (°C) 
0.078 (mm) 

In the face of different working conditions, the 
controller is responsible for regulating the speed of the 
pump so as to release the heat generated by the stack to 
the environment, in accordance with the set control 
objectives. 

2.2 Voltage model 

The fuel cell stack produces electrical energy by using 
hydrogen as fuel and oxygen as the oxidizer in an 
electrochemical reaction. The voltage of the electric 
stack is a non-linear function that factors in the ohmic 
voltage loss, concentration loss, and activation loss in the 
electrochemical reaction. The output voltage of each cell 
can be expressed as follows:  
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f act ohm conc= - - -V E V V V                (1) 

Where E is the Nernst voltage, Vact is the activation 
voltage loss, Vohm is the ohmic voltage loss, and Vconc is 
the concentration voltage loss. The Nernst voltage is 
expressed as follow: 
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Where Tf is the working temperature of the FC, 
2HP  

is the partial pressure of hydrogen, 
2OP is the partial 

pressure of oxygen, and P is stack pressure. The 
activation voltage loss is expressed as follows: 

( ) ( )
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2 f

2

O 498/
O 6

= .e
5.08 10

T
P

C


             (4) 

Where 1 4-   are empirical coefficients, 
2OC is the 

concentration of O2, and If is the pull current. The 
concentration voltage loss is expressed as follows: 

( )ohm f m c= +I R RV               (5) 
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Where Aac is the active area,   is the membrane 
water content, rm is the resistivity of the membrane, tm is 
membrane thickness, Rm is membrane resistance and Rc 
is the leads’ ohmic resistance. The concentration voltage 
loss is expressed as follows: 

f i
con

imax

= ln 1-
T I

V
N F I

  
 

  
             (8) 

Where Ii is the current density, Iimax is the maximum 
current density, N is the cell number, and   is the 

universal gas constant. 

2.3 Thermal model 

Based on the conservation of energy, the heat 
balance equation of the fuel cell electric stack follows: 

f
f f tot st gas cl amb

dT
= - - - -

dt
m C Q P Q Q Q          (9) 

f
tot = Δ

2

NI
Q H

F
               (10) 

f f f=P V I                    (11) 

( )cl cl w f in= -Q W C T T                (12) 

Where Qtot is the total power of the electrochemical 
reaction, Pst is the output electrical power of the stack, 
and Qgas is the thermal power from anode and cathode 
reactants, Qcl is the thermal power discharge through the 
cooling, Qamb is the thermal power radiated outwards 
from the stack, mf is the mass of the stack, Cf is the 
specific heat capacity of the stack, F is the Faraday's 
constant, Vf is the actual output of the monolithic fuel 
cell voltage, Wcl is the cooling water flow rate, ΔH is the 
low-level heat generation of hydrogen, Cw is the constant 
pressure specific heat capacity of cooling water, and Tin 
is the cooling water temperature into the stack. About 
90% of the waste heat is discharged through cooling 
water. Thus, Qgas and Qamb are neglected in this model. 

 
Fig. 1. Cooling circuit structure  
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3. CONTROL STRATEGY DESCRIPTION 

3.1 PID control 

The PID control algorithm is as follows: 
t

p d
0

i

1 d ( )
( )= ( )+ ( )d +

d

e t
u t K e t e t t K

K t        (13) 

Where e(t) is the difference between the current 
output value and the desired value, Kp is the 
proportionality coefficient, Ki is the integration 
coefficient; and is the differentiation coefficient. 

3.2 Fuzzy PID control 

The fuzzy PID control structure is shown in Fig. 2. The 
fuzzy PID control system combines fuzzy and PID control 
in a closed-loop system. The controller fuzzifies the 
obtained exact quantities of deviation e and deviation 
change rate ec through Ke and Kec, then makes e and ec 
fall into the corresponding thesis domains and assigns 
them fuzzy linguistic values by means of the subordinate 
function, then carries out fuzzy inference by means of 
the fuzzy rules, and finally defuzzifies the obtained 
results by means of the proportionality factor Ku, 

obtaining pΔK , iΔK  and dΔK , and then amends the 

three characteristic parameters of the PID, pK , iK , and 

dK . The equation as follows: The equation as follows: 

p( ) p( -1) p( )

i( ) i( -1) i( )

d( ) d( -1) d( )

= +Δ

= +Δ

= +Δ

n n n

n n n

n n n

K K K

K K K

K K K

            (14) 

Where Kp(n-1) Ki(n-1) and Ki(n-1) are the PID 

characterization parameters before Update, p(n)ΔK  

i(n)ΔK , d(n)ΔK  are the increments of the PID 

characteristic parameters, and Kp(n) Ki(n) and Ki(n) are the 
updated PID characteristic parameters. 

0= -e T T                    (15) 

Δ
=

e
ec

t
                   (16) 

Where T is the coolant out of stack temperature, T0 

is the target temperature, Δe  is amount of error 
variation, ec is the rate of change of error. 

The fuzzy PID control structure is shown in Fig. 2, set 
fuzzy domains and fuzzy subsets for controller inputs and 
outputs. The fuzzy subsets of input and output are NB 
(negative large), NM (negative medium), NS (negative 
small), ZO (zero), PS (positive small), PM (positive 
medium), and PB (positive large). The affiliation 
functions of fuzzy subsets NB and PB corresponding to e, 

ec, pΔK , iΔK , and dΔK  are Gaussian-type functions, 

and the affiliation functions corresponding to the 

remaining fuzzy subsets are trigonometric-type 

functions. Ke Kc and Ku are computed by iterative particle 
swarm optimization. 

3.3 Particle swarm optimization fuzzy PID 

Particle swarm optimization is a technique that 
imitates the flight behavior of a group of birds searching 
for food. In this technique, the birds in the flock are 
represented as particles, and each particle is considered 
as a possible solution. The particles' velocity and position 
are continuously updated to find the optimal solution in 
the entire search space. The principle is as follows: 
suppose there are m particles with arbitrary velocities in 
the n-dimensional search space, the position of each 

particle is ( )
1 2

= , , ,x
ni i i iX x x , the velocity of each 

particle is (
1 2 ni= ,v , ,v )i i iV v  and the optimal position of 

the particle is ( )
2 n

  = , , ,
1i i i iP p p p , The optimal position of 

the whole particle swarm is ( )
1 2 ng = , , ,g g gP p p p  

=1,2,3, ,mi . The principle of the algorithm is to 

initialize a group of particles with random velocities and 
positions, and then search for them through iterations. 
In each iteration, the particles update themselves by 
tracking the optimal solutions found by individual 
particles, i.e., the individual extremes, and the optimal 
solutions found by the group of particles, making 
constant adjustments to the particles' velocities and 
positions, and finally finding the optimal values in the 
search space. 

ITAE is the absolute value of the error multiplied by 
the integral of the time term over time, which reflects 
both the size of the error (control accuracy) and the 
speed of convergence of the error, taking into account 
both the control accuracy and the speed of convergence. 
The expression of the fitness function is as follows: 

-J(ITAE)= | ( )|dt e t t

+

            (17) 

Where t is the time. 
The velocity update equation is as follows: 

( ) ( ) ( )
d d d d d d

+1
1 1 2 2= V + -X + -Xk k k k k k

i i i i g iV w k c r P c r P     (18) 

The position update formula is as follows: 

 
Fig. 2. Fuzzy control structur  
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d d d

+1 +1=X +Vk k k
i i iX                 (19) 

The inertia weights are calculated as follows: 

 
( )( )- - -

( )= s s e m n

e

w w w k k
w k

k
         (20) 

Where ws is the start inertia weight, we is the inertia 
weight at the termination of the algorithm, km is the 
maximum number of iterations, kn is the current number 
of iterations, r1 and r2 are random numbers between 
[0,1], c1and c2 are the acceleration factors. 

The particle swarm optimized fuzzy PID control 
structure is shown in Fig. 3. This paper proposes a 

particle swarm optimized fuzzy PID control algorithm 
consisting of the following steps: 

Step 1: Initialize the parameters related to the PSO 
algorithm. 

Step 2: Calculate the fitness value of the particle. The 
optimal individual solution and the global optimal 
resolution are updated by the fitness update obtained 
from each operation. 

Step 3: Update the particle state. The velocity and 
position of the particle are updated using equations (18) 
to (20). 

Step 4: Check whether the termination condition is 
satisfied. If the set maximum number of operations is 
reached or the preset adaptation degree is derived, 
terminate the operation. Otherwise, return to step 2 to 
continue the operation. 

4. RESULTS AND DISCUSSION 

4.1 Model validation 

To validate the electrochemical model, Compared 

simulation results to experimental data from the supplier 

in Fig. 3.. Results showed a deviation within 0.10% to 
3.58%, confirming the accuracy of the heat generation 

calculation. Only relevant modifications should be 
described, as indicated by reference. 

4.2 Temperature regulation results under step load 

Two control strategies were compared by analyzing 
the current of pull load step and optimizing control using 
particle swarm optimization algorithm. The optimization 

 
Fig. 3. PSO-fuzzy control structure  

 
Fig. 4. Current-voltage relationship  

 
Fig. 5. Fitness curve  
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process is depicted in Fig.5 and resulted in a 15.3% 

acceleration of pre-optimization system regulation time 
and an 11.9% reduction in overshooting, as shown in 
Fig.6. 

4.3 Temperature regulation results under dynamic load 

To further validate the performance of the PSO-
Fuzzy-PID temperature control strategy, a dynamic load 
current was applied to the stack. As shown in Fig. 7 and 
in Fig. 8. The maximum deviation of the temperature of 
the stack was 0.48°C when the load current was 
dynamically varied, indicating the effectiveness and 
superiority of the control. 

4.4 Temperature regulation in a variable target 
situation 

The optimum operating temperature of the system 
will change due to fuel cell life and aging. The control 
strategy in the case of target change requires good target 

tracking ability, and the results are shown in Fig. 9 and in 

Fig. 10, where the optimized fuzzy control has a much 
greater ability to track the target than the pre-optimized 
fuzzy control. 

 
Fig. 6. Temperature control under step load  

 
Fig. 8. Stack temperature under dynamic load 

 
Fig. 7. Pattern of current changes 

 
Fig. 9. Pattern of current changes 

 
Fig. 10. Stack temperature with variable targets 
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5. CONCLUSIONS 
This paper presents a novel temperature control 

strategy for the PEMFC power stack, which employs a 
particle swarm algorithm optimized fuzzy control 
approach and a newly developed 80 kW dynamic power 
stack model. The proposed strategy is tested under 
varying operational conditions. The cooling water flow 
rate is used as a control variable to regulate the 
operating temperature of the electric stack in real-time. 
The main conclusions drawn from the study are as 
follows: 

(1) The temperature control strategy is evaluated 
against Fuzzy control, specifically in scenarios where the 
stack temperature needs to be changed from its initial 
value to a predetermined value as quickly as possible. 
The comparison showcases the benefits of the PSO-Fuzzy 
approach, which exhibits the fastest convergence speed, 
shortest adjustment time, and the smallest temperature 
overshoot. 

(2) The performance of the new strategy has been 
assessed under different conditions, including step 
current, dynamic load, and variable target. The results 
demonstrate that the temperature control based on this 
new strategy exhibits better dynamic performance and 
disturbance resistance. By applying this strategy, the 
temperature fluctuation of the electric stack can be 
reduced to less than 0.5°C. 
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