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ABSTRACT 
 The actors involved in the energy network have 

benefited much from its expansion in recent decades, 
but the network's management has become more 
difficult as a result of the sources' variability and 
unpredictability. Thus, it is essential to create models 
that can manage the current energy resources, which are 
becoming more and more dispersed. This study provides 
a new optimization model for participating in local 
energy markets based on peer-to-peer energy trading, 
using the twin-delayed deep deterministic policy 
gradient method and the double-auction trading 
mechanism. The model is integrated into an ecosystem 
based on agents, which enables the modeling of energy 
communities to produce a more plausible 
implementation scenario. The concept was used in a case 
study with 30 players in an energy community, and the 
findings revealed that each member saved an average of 
1.54 EUR per week. 
 
Keywords: deep reinforcement learning, local energy 
markets, multi-agent systems, peer-to-peer energy 
trading, twin-delayed deep deterministic policy gradient.  

1. INTRODUCTION 
The electrical grid has considerably incorporated 

distributed energy resources (DER), which benefits both 
the network and its users [1]. By 2050, it is expected that 
more than half of the world's generation will come from 
renewable energy sources (RES), which are also gaining 
ground quickly [2]. This development has brought about 
a paradigm change in favor of a distributed smart grid 
and enhanced flexibility toward a more dependable 
system. Power and energy systems (PES) planning and 
operation have been impacted by the output of RES's 
reduced predictability and stability [3]. 

The growth of local energy markets LEMs and peer-
to-peer (P2P) energy sharing demands the optimization 
of the player’s participation in these types of markets [4]. 
Reinforcement learning (RL) is a common approach in 

this domain. One of the most explored algorithms to do 
it is Q-Learning, and it can be used with a multi-agent 
variant to determine the optimal approaches for energy 
market pricing negotiations [5]. The most important 
issue with Q-Learning is that it cannot deal with 
continuous observation and action spaces in an original 
manner, particularly important in complex contexts, 
such as the smart grid, where most observations are 
continuous values. Another often used technique in 
multi-agent contexts is the multi-agent deep 
deterministic policy gradient (DDPG), which can be used 
to deal with continuous values observations and actions, 
an advantage compared to Q-learning [6]. 

The methodology proposed in this paper uses Twin 
Delayed DDPG (TD3) to optimize participation in LEMs 
and P2P based on Double Auction trading markets. The 
methodology was incorporated into the Agent-based 
ecosystem framework for Smart Grid (A4SG). This 
integration enables the methodology to be applied to 
real-world scenarios, hence enabling more rigorous 
testing. To evaluate the proposed methodology, an 
energy community of 30 players was used, with the 
results yielding an average savings of 1.54 EUR per player 
or 40% of the total potential savings. 

2. PEER-TO-PEER ENERGY TRADING MODEL 
The LEM used in this work implements a P2P energy 

trading model based on the Double Auction (DA) [7]. In 
DA buyers and sellers are paired with an effective 
method that benefits all traders according to their 
offerings. It is commonly used for trading stocks and 
energy [8]. 

A DA market's auction period is predetermined (e.g., 
hourly resolution in the electricity market). It lets traders 
place bids/offers at the beginning of an auction period, 
after which the auctioneer clears the market and 
announces the public market results (e.g., trading prices 
and quantities). 

Specifically, a DA market consists of a set of buyers 
and a set of sellers that indicate the amount of energy 
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they want to trade, in kWh, as well as the price, in 
EUR/kWh that they provide to the market. Then, an 
auctioneer creates a public order book in which the 
approved bids and offers are published, accordingly. 
Order book queues for purchase orders are ordered by 
reducing submitted buy prices, whereas order book 
queues for sell orders are ordered by rising submitted 
sell prices.  

The main motivation for energy players to 
participate in local energy markets is the financial savings 
that can exist, both when buying and selling energy. In 
this way, and to ensure that everyone involved feels 
motivated to participate, bids are restricted to a range of 
values, given by the following equation: 

𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙 < 𝐵𝑖𝑑 < 𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑢𝑦  (1) 

where 𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙  represent the price that the grid will 

pay in period 𝑡 if a player sells energy, and 𝑃𝑟𝑖𝑐𝑒𝑡
𝐵𝑢𝑦

 is 
the price to pay to the grid in period 𝑡 to buy energy, 
both in EUR/kWh. 

3. PROPOSED DEEP REINFORCEMENT LEARNING 
MODEL FOR PEER-TO-PEER ENERGY TRADING 

The increasing interest in LEMs and P2P demands 
optimizing the behavior of the players who participate in 
them. Thus, the primary purpose of the model proposed 
in this paper is to improve the players' decision-making 
regarding the price to be paid and the amount of energy 
to be transacted. To deal with potential excesses or 
shortages of energy, several market and individual player 
parameters, such as the demand forecast and its related 
error, are evaluated. 

Using Deep RL to optimize actions done in energy 
markets is a frequent practice, mainly because it is a 
problem that can be modeled by the Markov Decision 
Process and resembles trial-and-error activities. Thus, 
this paper proposes the use of the TD3 algorithm to 
discover the optimal policies for double auction-based 
energy markets, and its integration in A4SG, a smart grid 
representation, agent-based ecosystem. The proposed 
methodology centralizes training in order to consider the 
actions of all agents, rendering the environment 
stationary throughout training. On the other hand, real-
time execution may be decentralized, with each agent 
using just local information to perform actions without 
access to the knowledge of other agents. TD3, which was 
proposed in [9], is utilized as the Deep RL algorithm in the 
methodology proposed in this study. Even though DDPG 
can achieve optimal performance in some contexts, it is 
often susceptible to the values of hyperparameters and 
other forms of tuning. A common failure scenario for 

DDPG is when the learned Q-function begins to 
significantly overestimate Q-values, resulting in policy 
violations caused by the exploitation of Q-function 
mistakes. The TD3 method addresses this issue by 
proposing three significant strategies: a pair of critic 
networks, delayed updates, and action noise 
regularization. 

One of the main characteristics of an RL model is its 
environment, and in this case, it is partially observable 
since each of the agents has a non-total view of the 
entire state. Bearing in mind that the environment is 
competitive (i.e., each agent will learn independently), 
agents wish to conceal their bids so that other agents do 
not recognize and duplicate their strategy. The 
observation of the environment’s state in a period 𝑡 by 
a player 𝑝 is given by: 

𝑜𝑡
𝑝
= 

(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝
, 𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑢𝑦
, 𝑃𝑟𝑖𝑐𝑒𝑡

𝑆𝑒𝑙𝑙 , 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡−1
𝑝
) 

(2) 

where 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝

 represents the demand forecast 
obtained for player 𝑝  for period 𝑡 , in kWh, and 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑡−1
𝑝

 represents the transactions 
completed in the previous period of the energy market 
by player p. This list only contains the price and quantity 
of energy traded in each transaction, not containing 
information about the buyers and sellers.  

The action space of the environment, represented in 
Eq. 3 is composed of two continuous actions, in the range 
[0,1], one regarding the price, and the other regarding 
the amount of energy to trade. 

𝑎𝑡
𝑝
= (𝑎𝑃𝑟𝑖𝑐𝑒𝑡

𝑝
, 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡

𝑝
) (3) 

The calculation of the agent's bid price is 

straightforward. The 𝑎𝑃𝑟𝑖𝑐𝑒𝑡
𝑝

 value can be considered 
a percentage value, placed between the minimum and 
maximum prices that are accepted in the market as 
represented in Eq. 4. 

𝐵𝑖𝑑𝑃𝑟𝑖𝑐𝑒𝑡
𝑝
= 𝑎𝑃𝑟𝑖𝑐𝑒𝑡

𝑝
∗ (𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑢𝑦
− 𝑃𝑟𝑖𝑐𝑒𝑡

𝑆𝑒𝑙𝑙)

+ 𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙  

(4) 

Regarding the amount of energy to be transacted, there 
is one more variable to consider, which is the possible 
error in the player's forecast. The uncertainty that the 
error brings must be considered so that an agent can 
learn the best strategy to deal with it. The error is 
calculated using the forecast model’s evaluation metrics 
at the time of testing. After determining the error, 

𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝

 is applied within the possible range of the 

forecast, represented as follows, where MAE𝑡
𝑝

 
represents the mean absolute error (MAE), in the 
moment of training, for player 𝑝 in period 𝑡, in kWh: 
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𝐵𝑖𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡
𝑝
= 𝑎𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑡

𝑝

∗ ((𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝
+𝑀𝐴𝐸𝑡

𝑝
)

− (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝
− 𝑀𝐴𝐸𝑡

𝑝
))

+ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡
𝑝
− 𝑀𝐴𝐸𝑡

𝑝
) 

(5) 

For an agent to know whether he performed well in 
a particular period, he must learn from a reward that 
represents the consequence of its actions. The proposed 
reward is directly connected to the decrease of cost or 
growth of profit of a player with the market’s 
participation. The objective is to maximize the reward, 
which is provided by the following equations: 

𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡
𝑝
= 𝐷𝑒𝑚𝑎𝑛𝑑𝑡

𝑝

∗ {
𝑃𝑟𝑖𝑐𝑒𝑡

𝐵𝑢𝑦
, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟

𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙 , 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟

  
(6) 

𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡
𝑝
= ∑(𝑇𝑟𝑎𝑑𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖 ∗ 𝑃𝑟𝑖𝑐𝑒𝑖)

𝑁

𝑖=0

 (7) 

𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝
= ∑(𝑇𝑟𝑎𝑑𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖)

𝑁

𝑖=0

− 𝐷𝑒𝑚𝑎𝑛𝑑𝑡
𝑝

 (8) 

𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡
𝑝

= 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡
𝑝

∗

{
 
 

 
 
𝑃𝑟𝑖𝑐𝑒𝑡

𝑆𝑒𝑙𝑙 , 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡
𝑝
= 𝐵𝑢𝑦𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
≥ 0

𝑃𝑟𝑖𝑐𝑒𝑡
𝑆𝑒𝑙𝑙 , 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
< 0

𝑃𝑟𝑖𝑐𝑒𝑡
𝐵𝑢𝑦

, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡
𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
≥ 0

𝑃𝑟𝑖𝑐𝑒𝑡
𝐵𝑢𝑦

, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡
𝑝
= 𝐵𝑢𝑦𝑒𝑟 𝐴𝑁𝐷 𝐸𝑛𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
< 0

  

(9) 

𝑟_𝑏𝑢𝑦𝑒𝑟𝑡
𝑝

= 1 −
(𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡

𝑝
 −  𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
− 𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑡

𝑝
)

𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡
𝑝
 −  𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑡

𝑝  
(10) 

𝑟_𝑠𝑒𝑙𝑙𝑒𝑟𝑡
𝑝

=
(𝐶𝑜𝑠𝑡𝑀𝑎𝑟𝑘𝑒𝑡𝑡

𝑝
− 𝐶𝑜𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑡

𝑝
− 𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡

𝑝
)

𝑀𝑎𝑥𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑝
 −  𝐶𝑜𝑠𝑡𝐺𝑟𝑖𝑑𝑡

𝑝  
(11) 

𝑟𝑡
𝑝
= {

𝑟_𝑏𝑢𝑦𝑒𝑟𝑡
𝑝
, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝐵𝑢𝑦𝑒𝑟 

𝑟_𝑠𝑒𝑙𝑙𝑒𝑟𝑡
𝑝
, 𝑖𝑓 𝑅𝑜𝑙𝑒𝑡

𝑝
= 𝑆𝑒𝑙𝑙𝑒𝑟 

 (12) 

where 𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑡
𝑝

 is the minimum cost for the buyer p 
in the period t (i.e., computed by multiplying the demand 

by the minimum price of the market), and 𝑀𝑎𝑥𝑃𝑟𝑜𝑓𝑖𝑡𝑡
𝑝

 
is the maximum profit for seller p in the period t (i.e., 
computed by multiplying the surplus energy by the 
maximum price of the market). To simulate, test, and 
evaluate the use of the double auction P2P energy 
trading model in the proposed deep RL algorithm, the 
A4SG will be used. This solution is able to represent 
energy communities with a decentralized and 
distributed, agent-based approach, combining Multi-
Agent Systems (MAS) and Agent Communities (ACOM), 
where a MAS can contain numerous ACOMs, which 

represent aggregation entities. A4SG's agents use novel 
approaches to manage the smart grid's dynamic 
interactions. Branching creates agents that are 
extensions of the main agents, while mobility allows 
agents to move to distinct MAS or hosts, allowing a 
greater adaptation to their context. Representation 
agents from A4SG have a knowledge base with all their 
data and behaviors. The architecture of the developed 
A4SG MAS hosts three ACOMs: one to host the main 
agents, one to enable agents to engage in forecast 
services, and one to represent an energy community. 
The last one, from the energy community, has an 
additional ACOM to allow RL training. To implement the 
proposed solution, the ACOM for P2P training is created 
using the OpenAI Gym framework, enabling the agents 
that represent energy players to go to this ACOM to train 
new strategies of P2P trading.  

4. CASE STUDY 
In this case study, it is tested an energy community 

with 30 players. The training is carried out from the A4SG 
ecosystem, where the community representative (ACOM 
main agent) initiates the training by the players of the 
community. The agent responsible for training receives 
data from all agents and starts training. In training, each 
of the players will have an independent policy that will 
be used to train their behavior in a LEM. The main goal 
of the case study is to optimize the participation of the 
players in the LEM, minimizing their energy bill costs.  

Since TD3 is a robust method regarding 
hyperparameters, i.e., it does not require a significant 
tuning process, only one run of the model was 
performed, with the policies and the reward data being 
saved after every 500 training episodes. Each episode 
depicts a whole cycle of the market, which operates only 
when there are both buyers and sellers. The training was 
complete with 4000 episodes, and the evolution of 
rewards is shown in Fig. 1 and Fig. 2.  

Observing Fig. 1, all agents were able to sustain their 
positive reward despite the training being competitive, 
which is the first good conclusion. Examining Fig. 2, it is 
feasible to discern that the agents' rewards have a 
positive trend in connection to the three measures under 
study (maximum, minimum and average). But in fact, 
these rewards have a real meaning, which is the savings 
of the players participating in the market. Thus, in Fig. 3 
it is possible to observe the decrease in costs or increase 
in profit for each player. Analyzing the figure, it is 
possible to see that all players had positive results, 
including some that went from having costs to making 
profits (average 1.54EUR savings). 
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Fig. 1 Rewards evolution: Agents’ mean reward. 

 

 
Fig. 2 Rewards evolution: reward per episode 

5. CONCLUSIONS 
The use of a current reinforcement learning 

algorithm to maximize energy players' engagement in 
regional energy markets and peer-to-peer energy 
sharing is examined in this work. Through a case study in 
the energy community, the methodology – which 
employs the twin delayed deep deterministic policy 
gradient – proved its capacity to improve participation. 
Each participant saved an average of 1.54 Euros over a 
week or 40 % of all feasible price reductions.  
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