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ABSTRACT 
  The increasing importance of electric vehicles 

lies in their lower emissions compared to fossil fuel 
vehicles. However, challenges like long charging times 
and range anxiety hinder their widespread adoption. 
Battery swapping stations offer a practical solution to 
expedite EV refueling, reducing wait times and range 
concerns. This research proposes a battery-swapping 
architecture that provides battery-swapping services to 
electric vehicles while exploring additional revenue 
sources and cost reductions. The model uses batteries of 
the battery swapping station as a battery energy storage 
system, supplying power to mobile or stationary loads 
during grid or renewable energy source downtime. By 
offering cost-effective electricity during peak hours or 
non-availability, the model demonstrates up to a 35% 
reduction in consumer electricity costs during peak hours 
and an 8.8% reduction in overall costs during 24-hour 
operation. The implementation combines linear 
programming with machine learning to forecast 
renewable energy output and electric vehicle energy 
demand, considering flexible battery charging and 
discharging controls and degradation processes. These 
optimization results show the potential of the proposed 
model to boost battery swapping station income and cut 
costs, contributing significantly to the electric vehicle 
market's growth. 
 
Keywords: battery swapping station, electric vehicles, 
battery energy storage system, energy arbitrage, energy 
food and transportation nexus, optimization. 

NONMENCLATURE 

Abbreviations  
EV Electric Vehicles  
BSS Battery Swapping Station 
BESS Battery Energy Storage System 

SOH State of Health 
SOC State of Charge 
DB Depleted Battery 
FCB Fully Charged Battery 
Symbols  
 T Period  

 

1. INTRODUCTION 
The rise of electric vehicles (EVs) has significantly 

reduced greenhouse gas (GHG) emissions compared to 
traditional fossil fuel vehicles, resulting in a lower carbon 
footprint [1]. Due to these reduced emissions and 
competitive advantages, EVs have the potential to 
replace conventional vehicles in advanced EV markets. 
Additionally, the United Nations Climate Change (UNCC) 
has established climate targets, aiming to limit global 
temperature increases to 1.5°C and reduce GHG 
emissions by 43% by 2023 [2]. Achieving these emission 
reductions necessitates clean energy adoption and the 
integration of emission-free vehicles into the energy and 
transportation sectors. As a result, addressing the 
challenges associated with widespread EV adoption in 
the transportation sector through advanced charging 
methods, swapping stations, or hybrid models is 
imperative. 

While EVs have the potential to cut challenges like 
range anxiety and long charging times impede their 
adoption. Battery Charging Stations (BCS) offer fast 
chargers to address prolonged charging; however, these 
are not widely available and can accelerate battery 
degradation, reducing battery life [3]. EV batteries 
typically range from 70-100 kWh, with charging times of 
20+ hours for Level-1 (L1) slow chargers, 5+ hours for 
Level-2 (L-2) medium chargers, and approximately 45-60 
minutes for Level-3 (L3) fast chargers. Despite L3 
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chargers' quick charging, they can hasten battery 
degradation and reduce efficiency [28]. 

Proposing battery swapping stations (BSS) to 
address EV challenges by exchanging discharged 
batteries with charged ones, extending EV range [4]. BSS 
ensures rapid refueling with readily available charged 
batteries while optimizing the charging of incoming 

discharged batteries. However, this architecture incurs 
extra capital and operational costs, hindering global 
adoption and leading to high swapping service fees, 
limiting widespread use. Additionally, monitoring and 
controlling battery stock, quality, state-of-health (SOH), 
state-of-charge (SOC), life cycles, and degradation 
mechanisms are crucial for optimal BSS operation.

In a typical BSS setup, a fully charged battery (FCB) is 
provided to an EV in exchange for a depleted battery 
(DB), with the DB scheduled for charging based on a 
designated scheme. Integration of the BSS with a solar 
energy generation plant, such as a PV panel, enables DB 
charging using clean, cost-effective solar energy. A time-
series probabilistic machine learning (ML) algorithm 
forecasts EV arrival times, energy demands, and solar 
energy output for a specified period, often planned for 
the next 24 hours, to optimize charging operations. 

With precise knowledge of EV arrival times, energy 
supply, and demand, BSS optimizes energy operations to 
minimize grid electricity costs, particularly during peak 
hours, fostering energy and transportation synergy. A 
key challenge lies in additional operational costs, which 
can be mitigated by diversifying income streams—
providing services to the grid utility, participating in 
electricity markets, or supplying electricity to external 
mobile or stationary loads. These supplementary income 
avenues boost BSS profitability by, enhancing resource 
utilization and promoting broader adoption of the BSS 
architecture. 

This paper describes an innovative way of using a 
portable battery-based storage system in multiple use 
cases. We introduce a novel BSS-based strategy that 
leverages grid availability data, solar energy generation 
forecasts, EV arrivals, and energy demand predictions to 
minimize purchased electricity costs for external loads 
like cold storage or electric ovens. Its key contributions 
include balancing supply and demand using idle BSS 
batteries as a backup energy source (BES), reducing 
upfront battery costs, and enhancing storage services. It 
also introduces flexibility in battery charging and 
discharging rates for smooth system operation, 
incorporates battery degradation via the State of Health 
(SOH), and integrates both energy and transportation 
sectors, creating an Energy Transportation Nexus (ETN) 
to address multifaceted challenges. This strategy aims to 
optimize BSS efficiency while promoting sustainable and 
cost-effective energy management and transportation 
solutions. 

The rest of the paper is arranged as follows: The 
literature review in Section 2 presents the state-of-the-

art research in the area while highlighting the gap and 
potential for improvement. Section 3 defines the 
problem statement and key aspects of the study. Section 
4 highlights the proposed methodology of the underlying 
architecture. Section 5 describes the mathematical 
formulation of the proposed model. Section 6 
demonstrates the simulation output of the model and 
discusses the results and implications. Section 7 provides 
the conclusion of the study.  

2. LITERATURE REVIEW  
Solar energy, integrated with existing transmission 

and distribution infrastructure, is the fastest-growing 
renewable energy source, pointing to a renewable 
energy-driven future for the energy sector [6]. The non-
dispatchable nature of renewable energy leads to 
supply-demand mismatches, causing fluctuations. These 
fluctuations are managed by utilizing BSS in a B2G model, 
where the BSS not only offers swapping services to EVs 
but also contributes services to the grid [5]. 

Multi-objective BSS optimization orchestrates 
battery charging schedules to minimize grid load 
fluctuations and maximize revenue, capitalizing on 
diverse renewable energy sources like wind and solar [7], 
while diminishing load fluctuations, and enhancing 
economic parameters. A smart grid minimizes supply-
demand gaps by deploying demand response techniques 
such as soft load shedding or brownout and supply-side 
strategies to ensure cost-effective electricity [8]. 

The BSS technology review underscores its potential 
integration with grid-related functions, encompassing 
B2G, grid-to-battery (G2B), and battery-to-battery (B2B) 
operations [9], realizing operational flexibility based on 
charging schedule. Battery optimization is carried out by 
the battery management system (BMS) which oversees 
voltage, current, and temperature control rendering it 
indispensable for optimizing BSS operations [10]. 

The study delves into the combined effects of a PV-
based distributed generation system, using the battery-
to-X operational model to facilitate flexible B2G, G2B, 
B2B, PV2G, and PV2B transactions while adhering to 
quality of service (QOS) and battery SOH constraints. This 
research provides a valuable business model and 
insights, with potential extensions to consider various 
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battery capacities, price stochasticity, and PV production 
[29]. 

In BSS architecture, aggregators maximize profits by 
balancing energy demand and supply. While Battery 
Charging Stations (BCS) are cost-effective compared to 
BSS, the centralized charging approach [11]. Although 
PV-integrated BSS reduces battery charging costs, it can 
introduce negative impacts on electricity markets and 
system fluctuations which can be addressed by the BSS 
[12]. A dynamic model empowers BSS to participate in 
the electricity retail market. This strategy responds to 
price signals, allowing BSS to sell surplus energy to the 
market during high-price periods [31].  

To reduce cost and increase profit within the BSS, 
linear programming is employed for charging expenses, 
battery depreciation costs, and Operation and 
maintenance (O&M) expenses, and factors affecting 
both are indicated by sensitivity analysis [13]. Net 
present value (NPV) analysis assists in selecting the site 
and size of the BSS required for electric buses on specific 
routes. It's observed that the BSS size correlates directly 
with electricity sold [14]. Moreover, the application of 
the BSS architecture for private EVs has also proven 
beneficial and holds potential for widespread adoption. 

To maximize profits, BSS explores diverse income 
sources, including the novel use of idle batteries for 
frequency regulation services in the electricity market 
[15]. Optimizations in these scenarios focus on 
scheduling battery charging during PV availability, 
reducing electricity costs [16]. Furthermore, a day-ahead 
business model emphasizes optimal charging and 
bidding strategies, factoring in market dynamics, 
customer behavior, EV characteristics, and swapping 
fees, all aimed at maximizing BSS profits while managing 
inflows and outflows effectively [30,31,32,33]. 

A chance-constraint programming method is utilized 
to address uncertainties in PV generation and EV 
demand at the BSS, aiming to minimize grid electricity 
purchase costs while allowing for a controlled probability 
of constraint failure [17]. Additionally, a bi-level 
optimization approach, employing the Alternative 
Method of Multiplier (ADMM), is proposed for both the 
microgrid (MG) and BSS. This method targets cost 
reduction and congestion avoidance while considering 
battery degradation modeled in terms of depth of 
discharge (DOD) [18]. In alignment with the MG concept, 
a cyber-physical model integrates the nanogrid (NG) with 
the EV-BSS architecture, enhancing energy supply, 
reliability, resilience, and profitability using mixed-
integer linear programming (MILP). Effectively utilizing 

BSS storage capacity minimizes the investment cost of 
planned PV and energy storage system (ESS) capacity 
[23]. 

To mitigate congestion in EV taxis, a ranking system 
based on vehicle occupancy status is employed, 
translating into efficient scheduling plans [19]. Within 
the BCS architecture, battery charging scheduling (BCSS) 
optimizes Fast Charging Battery (FCB) demand while 
minimizing electricity cost [22]. BSS outperforms BCS in 
terms of flexibility and cost reduction potential, offering 
a broader array of services. 

While many BSS studies assume battery 
homogeneity, real-world scenarios often involve battery 
heterogeneity [20]. In contrast, another study employs a 
stochastic model to forecast electric bus (EB) load 
demand, accounting for unknown EB swap demands 
without reservations [21]. 

The review assesses the technical, economic, and 
environmental aspects of EV charging stations powered 
by hybrid generation sources, incorporating PV/Wind 
Turbine (WT)/Diesel Generator (DG)/Battery 
configurations, with battery types including lead-acid, 
flow-zinc-bromine, and lithium-ion based on NPV [24]. In 
another analysis of a typical BSS with installed solar 
generation, Markov Decision Problem (MDP) techniques 
are employed to minimize the weighted sum of charging 
costs [25]. 

A dynamic BSS optimization model, utilizing Long 
Short-Term Memory (LSTM) and Rolling Horizon 
Optimization (RHO), accommodates BSS heterogeneity. 
This model facilitates energy sales to the grid during peak 
load hours, offering B2G, G2B, B2B, and ancillary 
services, with model performance assessed via Root 
Mean Squared Error (RMSE) [26]. In a preliminary 
analysis, the BSS supplies electricity to an external load 
on a remote farmland, primarily serving a crop storage 
facility. Results reveal a reduction in the cost of 
electricity supplied to the grid [27]. 

Extensive research has explored BSS's technical, 
economic, and business dimensions, utilizing advanced 
ML algorithms and mathematical models to boost 
profitability, and cut costs. Yet, harnessing BSS energy 
storage for external loads remains underexplored. Prior 
studies often neglect battery charging, discharging, and 
degradation. This study introduces an innovative 
approach, integrating BSS-PV architecture and EVs to 
leverage BES capabilities, bolstering BSS income while 
lowering electricity costs. BES also has potential as a 
backup power source, addressing challenges in energy 
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and transportation. The next section outlines the 
problem and dataset. 
 

3. PROBLEM DESCRIPTION 
The problem description comprises problem 

statement Section 3.1 defining the underlying problem, 
and data description Section 3.2 which identifies the type 
of data, data resolution/granularity, and processing. 

 
3.1 Problem Statement 

 
   The research problem caters to minimizing the cost 
of electricity purchased by an external load 
interconnected with a solar energy generation plant, or 
grid utility while considering the energy storage 
component of a battery swapping station as a backup 
source of electricity.  
 
3.2 Data Description 

 
The obtained data is processed and provided to the 
proposed architecture which is bound to real-world 
constraints including the demand and supply balance, 
and battery limitations at the BSS to reduce the cost for 
optimal operation of the integrated system. 
   Incoming EV arrivals follow a random pattern, 
typically represented by a probability density function 
(PDF) of a random variable. This randomness introduces 
uncertainty into the energy demand forecast, which is 
vital for the BSS battery charging schedule. The BSS relies 
on this forecast to determine the number of depleted 
batteries (DB) that should be fully charged (FCB) before 
an EV arrives. Accurate forecasting and proper 
scheduling lead to efficient BSS operations, reducing EV 
refueling time, range anxiety, and unexpected stress on 
the charging infrastructure. The randomness in EV 
arrivals is reflected in the BSS's energy demand, making 

it suitable for exploring BSS as a dual-purpose source of 
operation. 
   Energy from renewable sources, such as solar, 
exhibits inherent intermittency, contributing uncertainty 
to the system model. To address this, an accurate 
prediction model is employed, forecasting solar 
irradiance for the upcoming period. This irradiance data 
guides a Maximum Power Point Tracking (MPPT) model 
to estimate energy output from the PV module. Precise 
predictions and effective MPPT result in improved 
scheduling and BSS optimization. This uncertainty and 
prediction impact the energy profile of solar PV data. 
Meanwhile, the grid availability dataset reveals load-
shedding periods throughout the day, pinpointing off-
peak and peak demand times. Data processing and 
analysis focus on the following aspects: 

• Identify the high/low price, availability/non-
availability periods of electricity from the grid 
and the solar energy generation plant. 

• Identify the period of the next EV arrival, along 
with the energy requirement. 

• Interlink the devised periods and share the 
outcome with the simulation model. 

4. PROPOSED METHODOLOGY 
The battery swapping station (BSS) operates in two 

modes: one for swapping EVs' depleted batteries (DB) 
with fully charged ones (FCB), and the other for 
managing and charging incoming DBs for future use. A 
typical BSS architecture includes the BSS control center, 
chargers in multiple bays, an inventory with FCB called 
the fully charged battery inventory (FCBI), a charging 
infrastructure connected to the grid and solar PV 
module, and a battery management system (BMS). The 
system is powered by both the grid and solar energy 
from PV panels. The energy and financial flows are 
depicted, emphasizing the system's income stream. Solar 
energy, a renewable and clean resource, can lead to cost 

Fig. 1. A Typical BSS Architecture 
Fig. 2. A Flow Diagram of Proposed Model 
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savings compared to grid electricity, which varies in cost 
between peak and off-peak periods, with peak rates 
being 50% higher, making grid electricity more expensive 
for the system. 

Efficient battery operation and health monitoring 
are ensured by the battery management system (BMS), 
which acts as the central control unit of the BSS. The BMS 
monitors cell temperature, voltage, and current, and 
estimates state of charge (SOC) and state of health (SOH) 
to ensure battery safety and longevity. A typical BSS has 
a maximum capacity of 22kW, composed of sixteen 
individual batteries with 1.375kW capacity each, 
organized in sets of four batteries for each swapping 
demand, providing 5.5kW energy capacity to arriving 
EVs. This swapping service represents the BSS's sole 
income source and optimizing its operation or increasing 
its profit potential could drive wider adoption of this 
infrastructure. Fig. 2 shows an overview of the proposed 
methodology. 

The widespread adoption of the BSS architecture is 
hindered due to the inherent cost of electricity which 
results in expensive charging producing expensive 
swapping service fees. Most recent methodologies use 
the available solar energy to maximum by proposing 
various charging schemes where the batteries are 
scheduled to charge maximally during the solar 
availability period, while the grid station is kept as a last 
resort. To cater to this optimal utilization smart switches 
are installed which switch the energy resource based on 
the demand criticality, available energy, and system cost. 
The main objective of the smart switch includes the 
maximum utilization of solar energy, minimum system 
cost, and meeting the defined minimum energy demand 
criteria of DB charging. 

The approach aims to efficiently utilize the available 
energy stored in the batteries of BSS while considering 
EV energy demand, available PV energy generation, and 
battery life. With accurate EV arrival forecast data and 

energy information, the model utilizes idle batteries as a 
backup source of energy during periods when solar 
generation and the grid are unavailable. Additionally, the 
high cost of grid electricity, especially during peak hours, 
makes the use of grid electricity the last resort. During 
peak load periods, energy demand is fulfilled by the 
batteries at the BSS, which are then recharged either by 
solar generation or the grid during off-peak periods. The 
model incorporates flexibility in controlling the charging 
and discharging of the batteries at the BSS. It has been 
observed that battery charging and discharging rates can 
sometimes be undesirable given the energy demand and 
generation profile. 

To avoid undesirable scenarios, the model manages 
and controls both the allowed charging rate and the 
allowed discharging rate based on demand and supply. 
Moreover, the model includes a battery degradation 
process based on the battery State of Health (SOH). The 
BSS estimates the incoming battery SOH, which is then 
used to determine the effects of battery degradation. 
This is incorporated in the model as the energy 
component that could have been provided by the battery 
but is unavailable due to degradation. The primary goal 
of the model is to minimize the cost of electricity. The 
model is simulated for four different scenarios 
highlighted in Table 1. The "Low" attribute in the table 
indicates that the system is either unable to achieve the 
desired output or is completely unavailable. Similarly, 
"High" indicates that the system is available to provide 
the desired energy output. These scenarios are based on 
grid and solar availability, which define the reliability of 
supply coming from these sources. The next section 
describes the mathematical formulation of the proposed 
model. 

5. MATHEMATICAL FORMULATION 
The proposed architecture comprises a BSS which 

acts as a control center where the optimization process 
takes place. The goal of this control center is to minimize 
the cost of electricity offered to the connected secondary 
load which can either be a mobile or a stationary load. 
For simplicity, it is assumed that the secondary load is 
stationary in the form of cold storage for crops installed 
on the farmland. 

Fig. 3 outlines the optimization structure and key 
components of our model, including the BSS control 
center, the grid utility providing electricity categorized as 
peak and off-peak, and solar energy generation. Solar 
power availability depends on local solar irradiance. The 
BSS serves as an energy hub, storing and selling energy 

Fig. 3. Optimization Model 
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to the load as needed, primarily through battery 
charging. 

 
 Table 1. Model Simulation Scenario 

Scenario No. Grid Reliability Solar Reliability 

1 Low High 

2 Low Low 

3 High Low 

4 High High 

 
Tool: The model is implemented and simulated using 

MATLAB, including the creation of the model, 
incorporating the constraints, data pre-processing, and 
deduction of statistical and graphical output for 
meaningful results. The model is formulated as the linear 
programming (LP) problem having the objective function 
of minimizing the cost of electricity as follows: 

Objective function: 

 
𝑚𝑖𝑛 ∑ ∑ 𝑥𝑖(𝑡) ∗ 𝑤𝑖(𝑡)

3

𝑖=1

24

𝑡=1

 

 

(1) 

Subject to: 
 

 
𝑥1(𝑡) + 𝑥2(𝑡) + 𝑥3(𝑡) = 𝑥4(𝑡) + 𝑥5(𝑡) 

∀𝑡 = {1,2, … , 𝑇} 
 

(2) 

 𝑥1(𝑡) ≤ 𝐺𝑚𝑎𝑥 (3) 
 

 𝑥2(𝑡) ≤ 𝑃𝑉𝑚𝑎𝑥 (4) 
 

 𝑥3(𝑡) ≤ 𝐵𝐸𝑆𝑚𝑎𝑥 (5) 

 𝑥3(𝑡) ≤ 𝐴𝐵𝐷 (6) 
 

 𝑥3(𝑡) ≤ 𝐵𝐸𝑆 − 𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (7) 
 

 
𝑥𝑖(𝑡) ≥ 0  

∀ 𝑡 = {1,2, … , 𝑇}, 𝑖 = {1,2,3,4,5} 
(8) 

 
In the above formulation 𝑥1(𝑡) represents the 

number of units of electricity sold by the grid utility 
during the period t. 𝑥2(𝑡)  represents the number of 
electricity units sold/produced by the solar generation, 
i.e., PV, during the period t. 𝑥3(𝑡)  represents the 
number of units of electricity sold by the battery energy 
storage system (BESS) to the stationary load during the 
period t. 𝑥4(𝑡)  and 𝑥5(𝑡)  refers to the number of 
electricity units consumed by the battery and load for the 
period t.  

The period is defined over the next 24 hours where 
each slot is kept variable based on the desired data 
granularity. For analysis, a 15-minute time slot is used, 
therefore, 96 periods are defined in the dataset, i.e., 
T=96. The weight component of the objective function 
𝑤1(𝑡) is the cost of electricity offered by the grid during 
the period t. 𝑤2(𝑡) is the cost of electricity offered by 
the PV generation for the period t. 𝑤3(𝑡) is the cost of 
electricity offered by the BESS during the period t. 𝑤4(𝑡) 
and 𝑤5(𝑡) are the cost system constraints associated 
with both battery and stationary load respectively set to 
unity for the period t 

The objective function (1) tries to minimize the cost 
of electricity purchased by the stationary load. The first 
constraint in (2) is the demand fulfillment criteria to 
balance the demand and supply of the system while 
ensuring stability. The battery degradation process is 
included in the model which is defined using the rated 
capacity of the battery 𝐶𝑟𝑎𝑡𝑒𝑑 , battery's running 

Fig. 4. Solar Energy Availability 

Fig. 5. Grid Energy Availability 
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capacity 𝐶(𝑡)  and battery's state-of-health 𝑆𝑂𝐻(𝑡) 
which is estimated during the period t. The maximum 
energy offered by the grid utility is limited by the capacity 
of the grid denoted by 𝐺𝑚𝑎𝑥  in (3). Similarly, the 
maximum energy offered by the PV and the battery are 
limited by their maximum capacity denoted by 𝑃𝑉𝑚𝑎𝑥 
and 𝐵𝐸𝑆𝑚𝑎𝑥  shown in (4) and (5) respectively. 

Moreover, the amount of energy that can be drawn 
from the BESS at the BSS is limited by the Allowed Battery 
Discharge (ABD) as in (6) which is a flexible parameter 
defining the battery discharge rate. It is observed that if 
the batteries are allowed to discharge without any 
control or flexibility they tend to discharge at a high rate. 
Therefore, ABD is essential to incorporate the battery 
discharge process providing flexibility and control over 
the BESS operation. Furthermore, the amount of energy 
that can be drawn from the BESS is also limited by a 
threshold value as in (7) beyond which the BESS cannot 
provide energy. This threshold in capacity is denoted by 
𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  whose value is computed using (9) where 
𝑆𝑂𝐶𝑚𝑎𝑥  is the maximum SOC allowed while charging, 
𝑆𝑂𝐶 is the flexible minimum allowed SOC beyond which 
BESS is prohibited from providing energy and 𝐶𝑟𝑎𝑡𝑒𝑑 is 
the rated battery capacity. 
 

 𝐶𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑆𝑂𝐶𝑚𝑎𝑥

𝑆𝑂𝐶
∗ 𝐶𝑟𝑎𝑡𝑒𝑑 (9) 

 
The cost of electricity offered by the BES at the BSS 

is subjected to multiple constraints and given the 
fulfillment of these constraints, the BES at the BSS offers 
the electricity at a price that is the weighted average of 
the electricity purchased by the grid and solar energy 
generation plant to charge DB at the BSS given by (10). 
 

 𝐵𝐸𝑆𝑝𝑢 =
(𝑃𝑉𝑝𝑢 ∗ 𝑡𝑃𝑉) ∗ (𝑔𝑟𝑖𝑑𝑝𝑢 ∗ 𝑡𝑔𝑃𝑉)

𝑇
 (10) 

  
The term 𝐵𝐸𝑆𝑝𝑢 refers to the per unit cost of 

electricity offered by the BES at the BSS. 𝑃𝑉𝑝𝑢denotes 

the per unit cost of electricity offered by the PV while 
𝑡𝑃𝑉 represents the subset of the period where the solar 
energy is available, 𝑔𝑟𝑖𝑑𝑝𝑢represents the per unit cost 

of electricity offered by the grid while 𝑡𝑔𝑃𝑉 refers to the 

subset of the periods where the grid is available except 
for the solar availability and T is the number of periods. 
The next section highlights and discusses the 
optimization outcome along with the implications of the 
model. 

6. RESULTS AND DISCUSSION 
Fig. 4 displays the solar energy available in kilowatt-

hours at the proposed site. The time is denoted in 
minutes over the next 24 hours, and the solar energy is 
obtained from the site's available solar irradiance passing 
through the inverters after conversion and maximum 
power point tracking (MPPT). For the case study, two 
separate days are selected: one with ample solar 
irradiance, while the other has the least energy available 
due to poor solar irradiance spread over 24 hours. As 
solar energy is the least expensive source of energy, it is 
best to maximize its utilization to reduce the cost of 
electricity. During periods of non-availability, the battery 
energy storage system (BESS) at the BSS can be used to 
provide energy to the load more cost-effectively than the 
grid utility. Moreover, grid availability also varies, and 
two separate cases are considered: one where the grid is 
always available, and the second where the grid may not 
be accessible due to load shedding, making it unreliable. 
The grid availability forecast is shared daily, and for 
simplicity, the output is presented in binary form as 
shown in Fig. 5. 

The model output generates a cost comparison of 
the two cases under discussion. The first setup 
implements the model without battery energy storage 
(BES), where the primary sources of energy are the grid 
utility and solar generation through PV panels. From the 
per unit cost of electricity dataset, it is evident that solar 
energy is prioritized over grid electricity in both peak and 
off-peak periods due to its lower cost. Therefore, 
whenever solar energy is available, the model maximizes 
its utilization by offering cheap electricity to the load, 
resulting in reduced consumption costs. 

The cost can be further reduced if the model 
incorporates batteries installed with the given solar PV 
panels to offer electricity during other periods as well. 
However, the high upfront cost of the batteries increases 
the overall expenses of the solar generation system and 
reduces the benefits. Given the problem of the high-cost 
requirement of the batteries, the second case considers 
the use of batteries at the BSS to complement solar 
energy during periods when solar energy is unavailable. 
This scheme not only eliminates the need for purchasing 
batteries for the solar generation system but also 
effectively utilizes the available solar generation energy, 
which can be used at a later stage. In the second case, 
the cost of electricity offered by the BES of the BSS is 
obtained using the weighted average cost of both grid 
and solar energy per unit, as expressed in (10). 
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Fig. 6 displays the model output for the first scenario, 
where we have a good solar energy output but an 
unreliable grid with load shedding incorporated. The 
simulation is performed with and without involving BES. 
From the output, it is observed that due to the non-
availability of solar energy and grid utility, the system is 
unable to provide energy to the load, resulting in load 
shedding. At the start of the day, the model predicts load 
shedding in the first case due to the non-availability of 
both solar and grid electricity. In the second case, the BES 
at the BSS fulfills the same energy needs during these 
periods. Moreover, the cost of electricity is lower for the 
BES case compared to the case without BES. 

During the solar availability period, it is observed 
that solar energy is maximally utilized, and both cases 
have the same output as they prefer to use available 
solar energy for cost reduction. As the solar irradiance 
decreases towards the end of the day, a peak period 
emerges where the available grid energy is more 
expensive than during the off-peak period. In the first 
case, the cost of electricity increases to the maximum 
value, while in the second case, the idle batteries of the 
BSS provide energy as a BES at a consistent price. During 
this period, a maximum reduction in the cost of 
electricity is observed, with a 35% decrease occurring if 
the batteries of the BES at the BSS are used. Finally, 
towards the end of the day, there is again a period of 
solar and grid non-availability. This remains unfulfilled in 
the first case, but the demand is met by the BES at the 
BSS in the second case. 

The second scenario is simulated, where the grid 
availability is low, i.e., the grid is unreliable, along with 
low solar irradiance, i.e., solar energy is not available. 
Therefore, there are periods of grid and solar energy 
non-availability, and as a result, the load must be shut 

down or deprived of energy, as shown in Fig. 5. The 
simulation results are shown in Fig. 7. From the results, 
it is observed that the load had to be shut down several 
times during the day for the setup without BES. However, 
the load has been fulfilled by the BES during periods of 
non-availability in the setup with BES, improving the 
system reliability and reducing the cost of electricity 
during the purchasing period. 

The third scenario is simulated with the grid 
available, while solar energy is less available due to low 
solar irradiance. Fig. 8 shows the simulation results, and 
it is observed that the two setups provide almost similar 
results during off-peak times, as the difference between 
the two is less. However, the difference increases during 
the peak period, where the cost of energy purchased 
from the BES is less than the energy purchased from the 
grid. 

The fourth scenario includes available grid and solar 
energy. Fig. 9 shows the simulation results, and it is 
observed that the cost is the same, especially during the 
solar energy availability period, as both setups utilize the 
available solar energy to its maximum potential. 
Moreover, the initial difference in cost is less, as the 
difference in the price of electricity between the off-peak 
grid rate and the BES rate is low. However, the difference 
becomes significant during the peak period, where a 35% 
reduction is observed, like in the first case. Meanwhile, 
no load has been shut down here due to the grid 
availability in the setup with BES. 

Table 2 presents the cost comparison for the four 
simulated scenarios during the 24-hour operation of the 
BSS as a BES. Scenarios 3 and 4 reduce the cost of 
electricity by 8.8% and 8.5% respectively during the 24-
hour operation. However, scenarios 1 and 2 show a 
negative sign or an increase in the cost of electricity 

Fig. 6. Cost Comparison of Scenario-1 Fig. 7. Cost Comparison of Scenario-2 
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purchase. The first two scenarios are those where the 
grid is not available or is unreliable, resulting in the load 
being shut down. During the normal operation in the 
setup without BES, the load is shut down as the supply is 
not available; hence, the load does not purchase any 
electricity, reducing the cost of electricity. Due to the 
load-shedding methodology, the actual energy usage or 
purchase remains unclear. This highlights that although 
the price of electricity has increased, the system is now 
able to provide uninterrupted electricity to the 
consumer. 

Table 2. Comparison of Electricity Cost Per Day 

Scenario 
Cost Difference 

(%) With BES Without BES 

1 1855118 1856971 -0.1 

2 1881382 1795117 -4.8 

3 1881382 2063391 +8.8 

4 1856971 2029567 +8.5 

 
A significant reduction is observed in all four 

scenarios, especially during peak load duration when an 
alternative cheap source of electricity is not available. 
The utilization of idle batteries at the BSS in the form of 
BES not only results in providing cheap electricity to the 
consumer but also enhances the utilization of the 
installed solar generation plant by offering storage 
during the solar availability period and providing 
uninterrupted electricity to the consumer. Moreover, 
the interconnection with the grid utility offers the 
optimal scheduling of battery charging strategies, which 
can further reduce the cost of electricity offered to the 
BSS for battery charging. In return, the BSS can offer 
battery energy capacity to the grid for stability and 
backup services. Although the BSS can act as a BES using 

the idle batteries by providing energy to external mobile 
or stationary loads, a detailed cost-benefit analysis of the 
BSS must be carried out to gain a better insight into the 
complete system's working and profitability. 

7. CONCLUSION 
The battery swapping station (BSS) addresses EV 

range anxiety and long charging times through quick 
battery swaps. However, its adoption faces challenges 
due to additional battery and swapping costs. To 
overcome this, the proposed model explores alternative 
income sources for BSS, utilizing idle batteries for grid 
stability, backup power, and storage. The model 
demonstrates up to a 35% cost reduction during peak 
load and 8.8% in 24-hour operations for external loads. 
Future improvements include the upgradation of the 
linear model towards a more complex integer model 
incorporating the uncertainty of energy and load 
demand for real-world optimization. The enhanced 
model will be integrated into a multi-disciplinary model 
focusing on energy, food, and transport sectors forming 
an energy, food, and transportation nexus (EFTN). 
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