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ABSTRACT 
 This paper proposes a data-driven linear model 
predictive control (MPC) method to assess wind farm 
capability of primary frequency regulation (PFR) and 
reasonably allocate droop coefficient to wind turbines 
(WTs). The proposed method transforms the wind farm 
PFR nonlinear model into a linear model by using 
Koopman operator theory (KOT). Hence, a convex 
optimization problem is constructed based on a linear 
MPC model, which makes real-time analytical solution 
possible. Furthermore, the linear model coefficient 
matrix can be obtained by data-driven training, which is 
independent of complete model and accurate 
parameters. The case study validates that the proposed 
method can achieve high-accuracy assessment and 
allocation that the relative error is less than 1.60e-2 p.u. 
by only using historical operation data, and is suitable for 
online applications owing to the fast calculation speed, 
which the average assessment time is no more than 
0.93s. 
 
Keywords: data-driven, droop control, Koopman, MPC, 
wind farm. 

NONMENCLATURE 

Abbreviations  
 KOT 
 MPC  
 PFR 
 WT 

Koopman Operator Theory  
Model Predictive Control 
Primary Frequency Regulation 
Wind Turbine 

Symbols  

i  
The change rate of i-th WT rotor 
speed 

e,iP  The active power output of i-th WT 

cJ  The rotational inertia of the WT 

,m iP  The mechanical power of the i-th WT 
  The air density 
S  The swept wind area of blade 

,w iv  The wind speed of the i-th WT 

,p iC  The wind energy utilization 
coefficient of the i-th WT 

0

,m iP  
The original mechanical power of i-th 
WT before PFR process 

,f iK  The droop coefficient of i-th WT 

nf  The rated frequency 

f  The frequency measurement 

f  The change rate of frequency 

,f gK  The droop coefficient of synchronous 
generators 

fK  The droop coefficient of the wind 
farm 

LP  
The sudden power mismatch of 
power system 

H  The power system inertia 
T  The time step 

1. INTRODUCTION 
As one of the most widely used renewable energy, 

wind energy penetration has continuously increased in 
the last decades [1]. However, WTs interfaces with the 
grid through power electronic converters, which causes 
the decoupling of rotor speed and system frequency [2]. 
Power systems are showing low-inertia feature in many 
areas. To guarantee frequency stability, WTs are 
required to participate in PFR. 

Variable speed WTs capture kinetic energy from the 
air, and have a wide speed adjustment range. Hence, the 
most widely adopted method is adding an extra control 
module on the power electronic converters, which 
applies the stored kinetic energy to emulate droop 
characteristics of traditional generators and regulate 
frequency [3]. The authors of [4] propose that the WT 
can regulate frequency by setting the droop gain. In [5] 
the authors further discuss the regulation of droop gain 
to avoid excessive use of kinetic which can threaten the 
operation safety of WTs. 

On the wind farm level, the overall droop 
characteristics should be provided to participate in the
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PFR by allocating power among WTs. In [6] power is 
allocated to WTs in the order of power margin. The 
authors of [7] propose a centralized MPC method to 
optimize WT power during PFR process. In our previous 
work [8] and [9] we propose an energy state index to 
reasonably allocate PFR power to individual WTs. 

In PFR process, it is necessary to maintain rotor speed 
of all WTs within limit boundary. Therefore, in order to 
ensure safe operation of WTs, a wind farm should assess 
the max droop coefficient in different scenarios. The 
authors of [10] propose that the droop coefficient can be 
described as a function of WT speed, which adjusts in 
real-time to prevent the rotor speed from exceeding the 
limit. Similarly, [11] develops the droop coefficient as a 
function of WT rotor speed and wind speed. However, 
three barriers interfere with the application of those 
physical model-based analysis methods. The first is 
physical model heavily relies on parameters accuracy 
and model completeness. With inaccurate parameters, 
the assessment results definitely deteriorate. The second 
barrier is the long solution time of large-scale 
optimization model, which is unsuitable for online 
application. The last one is the dynamic process of PFR 
exhibits complex nonlinearity, and hence the solution 
method isn’t off-the-shelf. 

With the increasing of installed sensors and 
calculation capabilities of power systems, researchers 
exploit the potential of data-driven methods to construct 
the model in complex conditions. In [12], a double-layer 
particle swarm algorithm is proposed to optimize power 
allocation among WTs. A data-driven stochastic 
projection algorithm is proposed in [13] to optimize wind 
farm power output. Besides, [14] adopts a data-driven 
method to assess the healthy operating condition of WTs 
and adjust their power output, which improves the 
overall feature of the wind farm. 

In [15], the KOT is developed to transform a nonlinear 
dynamic model into a linear pattern by augmenting the 
dimension of state space. In our previous work, a linear 
power flow model is constructed based on the KOT, 
which shows better accuracy compared to other data-
driven methods [16]. The authors of [17] further use the 
KOT to transform a nonlinear MPC into a linear MPC, 
which provides a feasible method to solve the nonlinear 
problem. 

This paper develops a data-driven linear MPC method 
based on KOT to assess the maximum PFR capability of 
wind farm and achieve the optimal allocation of droop 
characteristics among WTs. 

The remainder of the paper is organized as follows. 
Section II constructs the physical nonlinear MPC 
optimization model. The data-driven linear MPC model 

based on the Koopman operator is developed in Section 
III and validated by case studies in Section IV. Finally, 
Section V concludes the paper. 
2. PHYSICAL NONLINEAR MPC ASSESSMENT MODEL  

2.1 Dynamic Model of Wind Farm 

In this section, the dynamic process of wind farm PFR 
is modeled. For a variable speed WT, the captured 
mechanical power is 

( )3

, , ,

1
,

2
m i w i p iP Sv C  =                (1) 

where ,m iP  denotes the mechanical power of the i-th 

WT,  denotes air density, S  denotes the swept wind 

area of blade, ,w iv  denotes the wind speed of the i-th 

WT, and ,p iC  denotes the wind energy utilization 

coefficient of the i-th WT, which can be expressed as a 

function of the tip speed ratio ,/i i w iR v =  and the 

pitch angle i , where R denote the paddle radius, and 

i  denotes the rotor speed of i-th WT. 

The electro-mechanical transient process depends on 

the unbalance between the mechanical torque  ,m iT  

and the electromagnetic torque ,e iT , which can be 

expressed as 

m, e,

m, e,

c c

1 1
( ) ( )

i i

i i i

i i

P P
T T

J J


 
=  − =  −      (2)                

where i  denotes the change rate of i-th WT rotor 

speed, e,iP  denotes the active power output of i-th WT, 

and cJ  denotes the rotational inertia of the WT. 

A WT can emulate the droop characteristics of 
synchronous generators by directly regulating its output 
and responding to system frequency. Hence, the WT 
output power is related to the frequency change, and can 
be defined as 

0

, , , ( )e i m i f i nP P K f f= + −           (3)                           

where 0

,m iP  denotes the original mechanical power of i-

th WT before PFR process, ,f iK  denotes the droop 

coefficient of i-th WT, nf  denotes the rated frequency, 

and f  denotes the frequency measurement. 

Since wind farm and synchronous generators provide 
droop characteristics to regulate frequency, the 
frequency response is defined as a first-order inertial 
transfer function: 

n
,[( )( ) ]

2
f g f n L

f
f K K f f P

H
= + − −      (4) 

where f denotes the change rate of frequency, ,f gK  

denotes the droop coefficient of synchronous 



2 

 

generators, fK  denotes the droop coefficient of the 

wind farm, i.e., the sum of ,f iK , LP  denotes sudden 

power mismatch of power system, and H  denotes the 
power system inertia. 

2.2 Nonlinear MPC Assessment Model 

To solve the above dynamic model, a general 
approach is implementing differential discretization to 
(2) and (4), and the dynamic model can be rewritten as 

, , , ,

, 1 ,

,

( )m i k e i k

i k i k

c i k

T P P

J
 


+

 −
= +


        (5)                              

n
1 , n[( )( ) ]

2
k k f g f k L

f T
f f K K f f P

H
+ = + + − −     (6)                 

where T  denotes time step, and k is the discrete 
control point. 

According to (6), we can transform (3) into 
0

, , , , ( )e i k m i f i n kP P K f f= + −            (7)                       

The objective is to assess the maximum fK  of the 

wind farm and reasonably allocate it to the individual 
WTs in the entire PFR process, i.e., 

,
1

 max    
l

f i
i

K
=

                  (8)                                      

where l  denotes the number of WTs. 
To ensure the safety of all WTs, the operational 

constraints of rotor speed are defined as: 

,min , ,maxi i k i                 (9) 

where ,maxi  and ,mini  are the upper limit and lower 

limits of WT rotor speed. 
Therefore, (5)-(9) are the complete optimization 

model of wind farm frequency characteristics 
assessment. However, the mathematical model is a 
nonlinear programming problem, which is hard to solve 
analytically. Furthermore, the accuracy of solution is 
limited by the parameters, and the solution time also 
inhibits real-time application. 
3. DATA-DRIVEN LINEAR MPC ASSESSMENT MODEL 

3.1 Koopman-Based Linear Dynamic Model 

By observing the state equations in Section II, it can be 
concluded that the change of rotor speed and frequency 
mainly depends on the rotor speed and frequency in 

current state and control variables ,f iK  and ,w iv . 

Hence, the dynamic model can be formulated as 

1 1[ , ] ( , , )k k k k kf f+ + = u              (10) 

, , , ,[ , ]Tk f i k w i k=u K v                (11) 

where k  denotes the WT rotor speed vector at k , 
h

k u  denotes the control vector composed of droop 

characteristics and wind speed, , ,f i kK  denotes the 

column vector of all ,f iK  at k , and , ,w i kv  denotes the 

column vector of all wind speed at k . Considering the 

communication and solution delay, ,f iK  should be a 

constant in one PFR process. 
In order to transform the discrete-time nonlinear 

model (10) into a linear model to realize analytical 

solving, we first define ( , , )k k kf u  as mapping 

function of state space with augmented observation 
status: 

 T( , , ) [ , , ( , ), ] [ , ]T

k k k k k k k k k kf f f = =   u u z u   (12) 

where ( , )k kf   denotes nonlinear mapping function 

of original state variables at k , and liftN

k z  denotes 

the augmented observation state of liftN  dimension. 

By using N  to denote the dimension of mapping 

function, ( , )k kf   can be expressed as 

 
1( , )

( , )

( , )

k k

k k

N k k

f

f

f





 
 

=  
  



 



              (13)            

where ( , )N k kf   denotes the N-th function of 

( , )k kf  . 

The mapping function has multiple typical forms. 
Owing to its significant nonlinear fitting capability, the 
‘thin plate spline’ radial basis function is selected in this 
paper: 

     

2

2

2( ) log

k k

i k k k k

r

ξ , f r r

 = −


=

x c

ω
            (14)                      

where 
2

2
 denotes the Euclidean norm, kr  denotes 

the Euclidean distance, kx  denotes the original state 

variables at k , which is defined as [ , ]Tk kf , and c  is 

the basis vector. 
According to the KOT [15], (10) can be expressed as a 

global linear form in augmented state space. Using the 
mapping function shown in (12), the linear model is 
defined as: 

1 1 1 1[ , , ( , )] ( , , )k k k k k k kf f f+ + + + =    u    (15) 

where  denotes the finite-dimensional approximate 
matrix of the infinite-dimensional Koopman operator, 
which can be partitioned as 

 = A  B                (16) 

where A  denotes the lift liftN N  dimensional 

coefficient matrix corresponding to kz , and B  

denotes the liftN h  dimensional coefficient matrix 

corresponding to ku . 

With (12) and (16), the linear equation (15) is 
reformatted as linear predictor form [17]: 
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1k k k+ =  + z A z B u              (17) 

Since the wind farm historical operation data can be 
obtained, we define a training set as 

,1 , ,1 ,

1,1 1,

,..., , ,...,

,...,

k k L k k L

k k L

z z u u

z z+ +

    = =    


    =
    (18) 

where  denotes the input variable data set,  
denotes the control variable data set,  denotes the 

output variable data set, and L  denotes the number of 
samples. 

Based on the training set, the matrix A  and B  can 
be obtained by solving a least-square problem: 

2

2
min −  − 
A,B

A B          (19) 

The analytical solution to (19) is 
†[ , ] =A B G             (20) 

where †  denotes the pseudoinverse, and G  and  
are defined as 

,

T T
     

= =     
     

G       (21) 

3.2 Data-Driven Linear MPC Assessment Model 

In the PFR process, WT rotor speed continuously 
changes. The maximum droop characteristics 
assessment requests all WTs to make full use of stored 
kinetic energy and maintain their rotor speed within the 
range. 

Therefore, the objective function of the assessment 
model remains (8). In the process, the dynamic model of 
wind farm (17) can be rewritten as a linear MPC model: 

1

1

w,k
1

lk k
f

k k l

k k

f f

+

+

+

   
    
 =  +    
        

K
A B

v

 

 

        (22) 

where k  denotes the ( , )k kf   value satisfying the 

linear recursion relationship. 
The assessment model should also satisfy the rotor 

speed constraint (9). The initial state of wind farm 
augmented observation can be obtained through 
measurement and the mapping function, which is given 
as 

 0 0 0 0 0, , ( , )f f=   z            (23) 

To sum up, (8)-(9), (22)-(23) construct the complete 
data-driven linear MPC assessment model. Owing to the 
full linearization, the mathematical model is a convex 
optimization problem, which guarantees solvability. 

3.3 Framework of Assessment and Control 

The data-driven linear MPC framework in real wind 
farm can be divided into two processes: offline training 

and online assessment and control, which are shown in 
Fig. 1. and Fig. 2. 

1) The offline training process collects WT historical 
data as the training set to construct the Koopman linear 
model, and estimate A and B . 

2) The online assessment and control process use the 
matrix A  and B  to construct the linear MPC 
assessment model and solves it to obtain the maximum 

droop characteristics of the wind farm. Besides, f,iK  is 

allocated to WTs as a reference of local real-time control. 

The wind farm maximum droop characteristics fK  can 

be reported to the dispatch center to realize stability 
analysis of the whole grid. 

 

Fig. 1. Data-driven linear MPC assessment framework in 
real wind farm. 

 

Fig. 2. Data-driven linear MPC assessment process in real 
wind farm. 

4. CASE STUDY 
In this section, case studies are carried out in MATLAB 

to validate the proposed data-driven linear MPC method 
in frequency different scenarios. The installed capacity of 
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the wind farm is 70 MW, composed of 20 WTs, of which 
the capacity is 3.5 MW. There are 2 wind measurement 
towers in the wind farm. The rotor speed limit range is 
[0.7, 1,3] p.u., and the historical data within [0.73, 1.27] 
p.u. is used to train linear dynamic model. In this paper, 
the augmented dimension is 5, dimension of original 

state variables is 21, and dimension of kz  is 26. The 

wind speed range is 7-11 m/s. It is assumed that all WTs 
operate in MPPT mode before participating in PFR. The 
time step of control point is 0.1 s, and the length of 
predicted time in MPC is 30 s. We use 12 different wind 
speed scenarios, which are excluded from the training 
set, to discuss the linear MPC assessment accuracy, as 
shown in Fig. 2. 

 
Fig. 2. Wind speed test scenarios. 

4.1 Assessment Accuracy 

Fig. 3 and Fig. 4 shows the assessment results of fK  

and allocation of ,f iK  in different wind speed 

scenarios. The assessed optimal coefficients of the 
model-based MPC based on timing simulation with 
accurate parameters are considered as the truth value. 
For comparison, the artificial neural network (ANN), and 
model-based MPC based on inaccurate parameters, i.e., 

cJ  decreases 5%, H decreases 5%, and R  increases 

3% from their real value are also carried out. As shown in 

frequency rising scene, the maximum ,f iK  shows the 

opposite trend to wind speed, and the assessment 
results of linear data-driven MPC are highly approach to 
truth value compared to ANN and inaccurate model-
based MPC. As its counterpart, when frequency 

dropping, the maximum ,f iK  shows the same trend to 

wind speed and the assessment results of linear data-
driven MPC are also highly approach to truth value. 

The comparison validates that once parameters are 
inaccurate, physical model methods definitely deviate 
from the real frequency regulation capability, and the 
proposed method has the advantage of highly accurate 
assessment without relying on physical model 
parameters. 

In order to further demonstrate the accuracy of 
assessment, we compare the data-driven linear MPC 
method to model-based method with inaccurate 
parameters and ANN methods. For the inaccurate 

model-based method, the time-domain simulation and 

dichotomous method are used to assess fK . 

 

 
Fig. 3. Assessment results of wind farm droop coefficient 
in different test scenarios. 

 

 
Fig. 4. Assessment results of WT droop coefficient in 
different test scenarios. 

We use the assessed fK  into the accurate nonlinear 

dynamic model to obtain rotor speed deviation. Table Ⅰ 
compares the rotor speed root mean square error 
(RMSE) and maximum absolute error (MAE) in all 
scenarios. Obviously, the RMSE and MAE values under 
the proposed method are significantly lower than the 
model-based method, which demonstrates the accuracy 
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of the proposed data-driven method, and it is also 
independent of inaccurate parameters impact. 

 
Tab. 1 Comparison of Rotor Speed 

Frequency Method 
RMSE 
(p.u.) 

MAE 
(p.u.) 

Rising 

Linear data-
driven MPC 

1.03e-2 1.60e-2 

ANN 3.38e-2 4.30e-2 
Inaccurate model-

based MPC 
2.17e-2 3.03e-2 

 Dropping 

Linear data-
driven MPC 

6.91e-3 1.52e-2 

ANN 5.39e-2 5.86e-1 
Inaccurate model-

based MPC 
1.07e-1 1.91e-1 

Furthermore, we discuss the global assessment 
accuracy by comparing the proposed method and 
simulation results under accurate model. As shown in 
Fig. 5 and Fig. 6, the highlight component denotes the 
scenarios with two wind speed, the difference of which 
is within 1 m/s. Considering real conditions, these 
scenarios are more representative. From the results, it 
can be concluded that the assessment value (left figures) 
is highly close to the results by simulation test (right 
figures), which validates the global assessment accuracy. 
In fact, even in extreme wind speed scenarios, the 
proposed method still exhibits satisfactory performance. 

    
Fig. 5. Comparison of global assessment results of wind 
farm in frequency dropping scenarios. 

 

    

Fig. 6. Comparison of global assessment results of wind 
farm in frequency rising scenarios. 

4.2 Performance of Primary Frequency Regulation 

The influence of assessment result to the PFR process 
is further verified. We both input the assessed results of 
data-driven and inaccurate model-based methods to 
dynamic simulation model, and the dynamic variation of 
rotor speed, wind farm power and WT power are shown 
in Fig. 6. 

As shown in Fig. 6, the proposed method can ensure 
the rotor speed within the safe range in the whole PFR 
process. Meanwhile, it makes full use of stored energy of 
WTs and provides the maximum regulation coefficient. 

    
Fig. 7. Comparison of dynamic performance: (a) 
frequency rising;  (b) frequency dropping. 

4.3 Calculation Time of Assessment and Allocation 

Tab. 2 Comparison Of Calculation Time 

Frequency Average calculation time (s) 
Rising 0.93 

Dropping 0.89 

The calculation time of assessment and allocation is 
shown in Table II. As shown by the results, owing to the 
data-driven linear model, the proposed assessment 
calculation can be finished in one second, which satisfies 
real-time application requirement. 
5. CONCLUSION 

This paper develops a data-driven linear MPC model to 
assess the maximum capability of wind farm PFR, and 
optimally allocates droop coefficients to each WT. Based 
on the KOT, the nonlinear MPC model are transformed 
into the linear MPC form, and hence a convex 
optimization problem is constructed, which can ensure 
the solvability. The linear MPC parameters are obtained 
by data-driven training, and are independent of the static 
parameters accuracy and model completeness. 

The simulation results show that the proposed 
method has significant accuracy advantages over model-
based method under inaccurate parameters. Owing to 
the data-driven linear model, the solution time is very 
short, which ensures the proposed method suitable for 
real-time application. 
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