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ABSTRACT 
  Ensuring high performances and lifetime of 

battery packs has critical importance, because of the 
transition toward electric mobility. Therefore, correct 
estimation of the battery state with ad-hoc designed 
Battery Management Systems (BMS) is pivotal to 
address this challenge. In this context, application of 
Machine Learning (ML) is gaining increasing research 
interest as it includes data-driven algorithms that 
enable accurate and fast predictions of the battery 
state. For this reason, this paper aims to contribute 
with: (i) a survey of the newest contributions to the 
prediction of the State of Charge/Health (SoC/SoH), and 
(ii) by schematizing a methodology that uses simulated 
data to train state-of-the-art types of neural networks 
(NNs) for SoC and SoH estimation of a LiNMC battery 
cell. Research papers considered in this review included 
applications of deep NN, and other ML algorithms. The 
impact of the training dataset on the performances of 
the ML models and their capability to generalize is 
remarked throughout the paper. For this reason, a 
validated electro-thermal model is used to generate 
data that accounts for different temperatures and 
current loads to simulate scenarios with different 
environmental conditions and driving cycles. 

 
Keywords: Battery Management System (BMS), 
Machine Learning (ML), Neural Network (NN), State of 
Charge (SoC) estimation, State of Health (SoH) 
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NONMENCLATURE 

Abbreviations  

 BMS Battery Management System  
 CNN Convolutional Neural Network 
 FCNN Fully Connected Neural Network 

 GRU Gated Recurrent Unit 
 LSTM Long Short-Term Memory 
 MAE Mean Absolute Error 
 ML Machine Learning 
 MLR Multiple Linear Regression 
 MSE Mean Square Error 
 NN Neural Network 
 RMSE Root Mean Square Error 
 RNN Recurrent Neural Network 
 RVM Relevance Vector Machine 
 SoC State of Charge 
 SoH State of Health 
 SVR Support Vector Regression 

 

1. INTRODUCTION 
The transition from fossil fuels to electric mobility is 

an important step toward reduction of the air pollution 
and climate change and is resulting in the continuous 
growth of the electric car share in the automotive 
market. For this reason, the sustainable lifecycle of 
battery packs for electric vehicles, which involves 
production, operation, and end-of-life, has fundamental 
importance for players involved in this field. 

Battery packs have a modular structure, with cells 
grouped into modules and modules interconnected 
within the pack [1]. The design of a suitable BMS is 
essential to maintain optimum operating conditions at 
all these three levels. Indeed, BMSs enable cells 
monitoring and balancing, fault diagnosis, thermal 
management and estimation of charge level and health 
state [2]. Among these, SoC and SoH have a significant 
impact on the battery cell state. SoC and SoH are 
generally difficult to directly measure; therefore, the 
implementation of models and methods for their 
estimation is a topic of great interest in both the 
research and industrial communities [3]. 
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SoC is defined as the residual capacity that can be 
supplied by the battery cell at its current operating 
state. It can be estimated with look-up tables, ampere-
hour integration, model-based methods, and data-
driven methods. The application of look-up tables is 
practical and immediate; however, they are 
characterized by low accuracy and robustness. The 
reliability of ampere-hour counting can be affected by 
measurement errors, accumulated during the time, due 
to sensors’ accuracy. Model-based estimation can 
leverage equivalent circuit models and electrochemical 
models that can be coupled with adaptive filters, such 
as Kalman filters. In these cases, although the 
predictions are accurate, a high computational effort 
needs to be considered because of the iterative nature 
of these methods. 

SoH measures the degradation of a battery cell, 
which is typically evaluated in terms of the actual 
capacity or of the internal resistance, according to 
equations (1) and (2): 

     (1) 

    (2) 

where, SoHC and SoHR indicate the SoH in terms of 
capacity and resistance respectively, and the subscripts 
t, f, and 0 indicate the value of the capacity or 
resistance at the current time (t), at the end-of-life (f), 
and when the battery is new (0). Evaluation of both 
SoHC and SoHR can be performed with direct 
measurement or with indirect estimation. A direct 
measurement can be easily carried out in laboratory 
conditions but not onboard during operation, whereas, 
indirect estimation can be performed with model-based 
or data-driven methods. Once again, data-driven 
models enable a simpler black-box approach that does 
not involve the modelling of physical phenomena.  

Increasing computational power, availability of big-
data and capability to process them, and the possibility 
to combine multiple sensors enhanced data-driven 
methods involving various ML algorithms and 
deployment of NNs [4]. These methods enable real-time 
monitoring of the battery state by processing input data 
in very limited time, and, therefore, a big effort is 
devoted by researchers to investigate new applications 
and solutions. However, the development of a data-
driven model involves collection of a large amount of 
data, which is time and resource consuming. Therefore, 
challenges arise in terms of affordable collection of 
high-quality training datasets, and implementation of 
new solutions for the overall architecture of the model. 
For these reasons, this paper aims to: (i) discuss latest 

contributions that have not yet been included in other 
reviews and (ii) to schematize a data-driven model that 
is trained on simulated data. Collection of high-quality 
data is essential in implementation of data-driven 
models. Indeed, dataset collected in scenarios with 
different load-history and temperature has higher 
quality and enables training of models with higher 
capability to generalize. However, the overall data 
collection process becomes more expensive and time-
consuming as the scope of the data collection increases. 
In this context, high-fidelity physics-based models can 
provide data with a wide range of scenarios considered 
and this is the reason why a model based on the use of 
a simulation dataset was investigated in this work.  

2. STATE OF THE ART  
In this section, firstly a summary of typical workflow 

for the application of ML algorithms and NN in SoC and 
SoH estimation is provided, and then scientific 
advancements reported in the latest research papers, 
not included in previous reviews, are discussed. 

2.1 A workflow for data-driven applications in SoC and 
SoH estimation 

ML algorithms are typically divided into 
unsupervised, and supervised. Unsupervised ML 
algorithms deal with unlabeled data and are used for 
clustering, dimensionality reduction, and finding 
relations; supervised ML deals with classification and 
regression problems and involve respectively 
categorical and continuous labeled data. The choice of 
the appropriate ML algorithm depends on the specific 
task to be addressed. In particular, the estimation of 
SoC and SoH mainly involves regression algorithms. 

For these kinds of data-driven methods, the use of a 
dataset with adequate quality and size plays a key role 
[3]. Indeed, data can be collected with dedicated 
experimental campaigns, simulations with high-
throughput calculation, and mining from literature and 
datasets available from other studies [5]. Simulated or 
experimental data can account variability of many 
factors that impact the operating conditions of the 
batteries, such as the load profile and the temperature. 
Considering higher number of levels for each factor is 
essential to improve the capability of the trained model 
to generalize over a broader range of scenarios [3],  
and, therefore, leads to higher quality of the dataset. 

Dedicated experimental campaigns either in a 
laboratory or in real vehicle operating conditions enable 
collection of high-fidelity data, however, they can be 
time-consuming and expensive [6]. On the other hand, 
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the use of high-fidelity simulation models can enable 
the collection of larger structured datasets, with various 
simulated scenarios that may be difficult to be easily 
reproduced in a laboratory. Additionally, in the last 
decade, researchers have been storing open-source 
repository datasets of measurement campaigns to 
make them available to wider research community [7]. 

Once the data collection process is completed, the 
next step to be implemented is feature engineering, 
which enables a representation of the input data, using 
descriptors that are properly identified through 
preliminary analysis. For the application under study, 
these data typically consist of signals related to electric, 
mechanical, and thermal parameters. Typical processes 
of features’ extraction from signals involve the 
calculation of statistical descriptors and either 
frequency or time-frequency domain analysis. Several 
types of NNs, such as CNNs, RNNs, and deep NNs, can 
successfully process portions of signals without previous 
extraction of features, avoiding the feature engineering 
step. 

After completing the feature engineering step, 
proper model choice, based on ML and NNs algorithms 
can be performed in order to estimate SOC and SOH. 
These algorithms include linear regression, SVR, shallow 
NN, deep NNs, CNNs, and RNNs, which will be analyzed 
in detail in the next subsection along with studies that 
involved their deployment [4]. 

Model validation is finally performed for the 
evaluation of prediction performances. Typical metrics 

that are used to evaluate regression models are the 
mean square error (MSE), the root mean square error 
(RMSE), the mean absolute error (MAE), and the 
correlation coefficient R2. Metrics used for classification 
tasks are the accuracy, the error rate, and the recall. As 
the model is trained to process data not included in the 
training set, it is important to test its capability to 
generalize. Indeed, an error in the model with data used 
in the training set (training error) is distinguished from a 
generalization error, which is the error that occurs 
when the model works on new samples. For this reason, 
the dataset is normally split into training, validation, 
and test sets. The validation and test sets are mutually 
exclusive with the training set, and to ensure this, four 
methods are typically used to split the dataset and to 
evaluate the selected metrics: the hold-out, the cross-
validation, the leave-one-out cross-validation and the 
bootstrapping method [5]. 

2.2 Analysis of some of the latest contributions 
available in the literature  

As mentioned in the previous subsection, there is a 
wide range of algorithms that have been considered in 
research papers available in the literature to train 
regression models for SoC and SoH estimation. They 
focus on algorithmic advances to improve performances 
of the models, on the inclusion of new information 
gathered with sensor fusion, and on novel solutions to 
overcome current challenges. 

Guo and Ma [8] benchmarked different state-of-
the-art types of deep NN, such as a simple FCNN, LSTM, 
GRU and temporal convolutional network, which is a 
particular type of CNN, for the SoC estimation. They 
trained these NNs with battery current and voltage, and 
evaluated the performances in terms of capability to 
generalize, computational efficiency and noise 
robustness. The results indicated that the FCNN showed 
the highest RMSE compared to the other algorithms; 
however, it was the most efficient in terms of 
computation time due to its simpler structure. On the 
other hand, the temporal convolutional network 
showed the best performance in terms of data noise 
robustness, thanks to its convolutional layers. 

Besides current and voltage, Sulaiman et al. 
considered both ambient and battery cell temperature 
as input to train an FFNN for SoC estimation, using data 
collected during 70 trips of a BMW i3 [9]. Several 
training algorithms were benchmarked, such as 
Particles Swarm Optimization, Genetic Algorithm, 
Differential Evolution, Adaptive Moment Estimation, 
and Evolutionary Mating Algorithms. Results highlighted 

Fig. 1. An ML implementation workflow. 
 
 



4 

the lowest error and the second-lowest time required 
for training for evolutionary mating algorithm. 

Jiang et al. also considered stress measurement to 
train LSTM for SoC estimation [10]. Preliminary results 
revealed that the integration of mechanical 
measurements with electrical ones leads to improved 
efficiency when ensuring accuracy, however, further 
developments need to be addressed, such as 
optimization of hyperparameters and the use of a 
dataset with multiple temperatures. 

Wang et al. developed a novel hybrid model that 
uses moving mean and incremental approach in 
combined implementation of RVM and Coulomb 
counting to estimate SoC [11]. The dataset was 
obtained by merging experimental and simulated data, 
respectively from the Center for Advanced Life Cycle 
Engineering at the University of Maryland and the 
Advanced Vehicle Simulator developed by the 
Renewable Energy Laboratory. Validation and test 
revealed that the RMSE can stay below 2%. 

To process both labeled and unlabeled data and, 
therefore, address data-hungriness of NN and costs of 
the labelling process, Ma and Zhang developed an input 
reconstruction-aided network to estimate SoC [6]. This 
network was made of an input reconstruction module 
and a linear unit, where the former was composed of an 
encoder and a decoder, both realized with LSTM layers. 
Datasets with different labeled/unlabeled data 
proportions have been compared in training of the 

proposed algorithm. Results showed an accuracy 
increase of more than 14% when large amounts of 
unlabeled observations were included, in comparison 
with training processes with no additional unlabeled 
observations. 

With the purpose of exploiting data generated 
during on-field-operation, Shi et al. implemented a 
cloud-based data-driven architecture to model battery 
cell behavior for real-life-electric vehicle applications 
[7]. Such a framework consisted of sensors collecting 
data and continuously transmitting them to the cloud, 
to improve capability of SoC and SoH estimators, 
through offline procedures. Updated models were then 
used for onboard monitoring and diagnosis during 
operations. 

Marri et al. benchmarked classical ML algorithms 
for SoH estimation, such as MLR, polynomial regression, 
SVR, and random forest, as they allow good accuracy 
and lower computation effort [12]. Features were 
selected based on analysis of partial charging times. 
Results indicated that partial charging times are well 
correlated with a number of charging/discharging 
cycles, when voltage is higher than 3.7. The overall best 
performance for all feature sets was achieved using 
SVR. 

3. CASE STUDY 

As discussed in the previous paragraphs, 
generation of a dataset that encompasses a wide range 
of load-profiles and environmental conditions is 

Tab. 1. Summary of the research papers analyzed in this survey. 

Ref. ML algorithm Input Temperature Load profile Performance 

[6] DNN 
Labeled and 

unlabeled current 
and voltage 

10°C,  
25 °C, 40°C 

UDDS, LA92, and 
mixed. 

- 

[7] 
Attention-based deep 

learning 
Current, voltage, and 

temperature 
≤ 45° C 

Data collected during 
real trips 

MAESoC≤ 2.5% 
MAPESoH≤ 2.5% 

[8] 
FCNN, LSTM, GRU and 

TCN 
Current, voltage, and 

temperature 
0 °C, 10°C, 25 

°C, 40°C 
US06 , HWFET, UDDS, 

LA92. 
RMSEGRU., LSTM, 

TCM ≤ 3% 

[9] 
FFNN, different training 

algorithms 

Current, voltage, and 
cell and ambient 

temperature 

Ranging 
between 5° C 

and 35° C 

Data collected during 
real trips 

RMSE = 4.70% 

[10] LSTM 
Current, voltage, and 

battery stress 
25 °C 

Constant, short and 
pulse conditions, 
NEDC and UDDS 

RMSE = 1.88% 

[11] 
Moving window- 

incremental learning 
RLM+ Coulomb count. 

Current and voltage 
0 °C, 25 °C, 

45°C 
UDDS, NYCC, NEDC, 
and Japanese 1015. 

RMSE ≤ 2% 

[12] 
MLR, SVR, and random 

forest 
Partial charging times 

Controlled 
with climate 

chamber 

NASA Ames 
Prognostics Center of 

Excellence - data 
repository 

R2
SVM=97.2% 
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fundamental to train models with acceptable capability 
to generalize. However, this is an expensive and time-
consuming process, especially in the case of SoH 
estimation, in which required data should involve the 
entire useful life of the battery system. For this reason, 
this study aims to contribute to this challenge with a 
methodology which is schematized in Figure 2 and 
involves the use of a validated physics-based model 
with lumped-parameters to generate a training dataset 
[2]. This case study considers a pouch Li-NMC battery 
cell with a capacity of 20 Ah and a rated voltage of 3.7 
V, with a physical size (W x L x T) of 145 mm3. To 
introduce a variety in the training dataset, during the 
model-based generation of data, a set of plausible 
numeric values is randomly selected based on the 
statistical distribution of typical values of each of the 
lumped parameters. Then, permutations can be carried 
out to simulate non-identical data. Different 
environmental conditions, driving styles and load 
profiles are set for the generation of the training 
dataset, which is used to train and benchmark different 
state-of-the-art types of deep NNs for the estimation of 
the SoC and SoH. Finally, validation of the trained model 
is carried out by regression of data that were collected 
during experiments to calibrate and validate the 
physics-based model with lumped-parameters. In this 
way, a NN is trained with synthetic data, and validated 
with real data. 

 

4. CONCLUSIONS 

In this study, a survey on the latest advancements 
in ML applications for SoC and SoH estimation is carried 
out. The present analysis highlighted that the latest 
research trends focus on both algorithmic improvement 
and benchmarking of the learning algorithms, and 
inclusion of as much data as possible to improve the 
prediction performances. 

Two research streams for inclusion of larger 
amount of data can be observed: one focuses on 
inclusion of new information such as mechanical stress, 
and the other focuses on development of new 
architectures that integrate unlabeled datasets or 
cloud-based data collected during operation. 
Additionally, all the reviewed studies remarked the 
importance to collect data with as much environmental 
and load conditions as possible to ensure the highest 
capability of the trained model to generalize. 

This is due to the need for a large dataset that 
encompasses as much operating scenarios as possible 
to achieve good generalization capability. However, this 
is a time and resource-consuming process, and, to cope 
with this challenge a methodology that exploits 
simulation of training dataset with a validated model is 
schematized and proposed. Full development and 
demonstration of such methodology as a valid and 
convenient technique will be addressed in future 
research. 
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