
 
 

A dynamic prediction method for the outlet fluid temperature of the large-scale 
borehole thermal energy storage system based on the multi-channel parallel 

neural network model 
 
 

Pengchao Li 1, Fang Guo 1, Yongfei Li 2,Xuejing Yang 3, Xudong Yang 1* 

1 Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China 

2 The Major Projects Center of the Administration Committee of the Qingdao Pilot Free Trade Zone, Qingdao 266743, China 

3 Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China 
 (*Corresponding Author: xyang@tsinghua.edu.cn) 

 
 

ABSTRACT 
  Borehole thermal energy storage (BTES) is a 

technology in which the thermal energy generated 
during non-heating seasons may be collected and stored 
in the soil for extraction in the heating season. However, 
the average soil temperature of BTES continues to decay 
with the heat extraction process, resulting in a serious 
mismatch between the heat extraction and the actual 
heat load. The variable flow operation of the BTES 
system allows for flexible adjustment of the heat 
extraction, increasing the heat flexibility of the BTES 
system. However, traditional heat transfer models of the 
BTES cannot quickly and accurately predict the outlet 
fluid temperature dynamically, making it difficult to 
match real-time heat load requirements through online 
regulation of the BTES system. The paper proposes a 
dynamic prediction method for outlet fluid temperature 
of the BTES system based on the multi-channel parallel 
neural network model. To train the neural network 
model, fluid temperature, flow rate, and multiple sets of 
soil temperature monitoring results from a large BTES 
project in Chifeng lasting 11,947 hours were used as the 
dataset. Randomly divide the dataset into 60% as the 
training dataset, 20% as the validation dataset, and 20% 
as the test dataset. The input layer of the basic model 
contains inlet fluid temperature, flow rate, and multiple 
sets of soil temperature; the outlet water temperature of 
the BTES is the output layer. The input features of the 
advanced model also include the inlet temperature, 
outlet temperature, and flow rate of the previous 
moment (hour). After training, the variance of the 
prediction error for the outlet temperature of the basic 

model and the advanced model is 0.93 (℃)2 and 0.27 

(℃)2, respectively. The advanced model can rapidly and 

accurately predict the outlet temperature of the BTES, 
which implies that by continuously iterating with the 
model, the optimal flow rate can be found to match heat 
extraction with the real-time heat load. 

The influence of changing the heat extraction flow 
rate of the BTES was also evaluated. The heat extraction 
of the BTES system increases rapidly with the heat 
extraction flow rate and then levels off, which 
emphasizes the importance of variable flow operation 
for the flexible operation of BTES systems. 
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1. INTRODUCTION 
With the increased attention to energy security and 

environmental issues, the application of sustainable 
energy sources, represented by solar energy and thermal 
energy from industrial waste, in the heating sector has 
been increasing. Sustainable energy sources are usually 
intermittent and unstable [1]. The sustainable energy 
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generated in summer is wasted due to seasonal 
mismatches with heating demand. Perera et al. showed 
that long-term storage, which can utilize renewable 
energy surpluses in summer to meet winter heating 
needs, plays a crucial role in the energy transition and 
can increase flexibility in response to climate change [2]. 

The application of borehole thermal energy 
storage(BTES) allows thermal energy generated during 
the non-heating season to be captured and stored in the 
soil and extracted for heating during the heating season 
[3]. However. the average soil temperature of a BTES 
system under design conditions continues to decrease 
with the heat extraction process, resulting in a 
decreasing amount of heat extraction [4]. This means 
that there is a serious mismatch between the amount of 
heat extracted and the actual heat demand. The variable 
flow rate operation of the BTES system can flexibly 
regulate the heat extraction power, thus increasing the 
flexibility of the BTES system for heat supply. Current 
research on BTES systems is mainly based on the physical 
model, which simulates and calculates the BTES thermal 
response based on physical and thermodynamic 
principles. Software such as TRNSYS embedded with duct 
ground heat storage model [5], COMSOL [6], and 
FEFLOW  [7] have been used to simulate BTES systems, 
which are mostly used to guide the design of BTES 
systems or for long-period simulations under design 
conditions [8] However, due to the large amount of 
parameter identification and the difficulty to accurately 
give the real-time soil temperature distribution after a 
long period of operation, it is difficult to meet the need 
for online flexible control caused by real-time thermal 
load fluctuations. 

The heat extraction of the BTES system is calculated 
by multiplying the temperature difference between the 
inlet and outlet of the fluid by the flow rate. To meet the 
needs of the actual operation of large-scale BTES 
systems, it is necessary to develop a fast and accurate 
real-time prediction model of the outlet temperature of 
the BTES system. In recent years, with the arrival of the 
big data era, energy monitoring platforms have gradually 
been popularized and improved, resulting in a large 
amount of data in the field of heating, which lays the data 
foundation for the realization of the optimal operation 
and control of the system. Benzaama et al. predicted the 
evolution of the temperatures of the underground 
storage tanks and the earth-air heat exchanger based on 
the experimental data using the long and short-term 
memory network algorithm, and the results verified the 
accuracy of the neural network models [9]. Liu et al. 
constructed a database by using collaborative modeling 

with MATLAB and COMSOL and used artificial neural 
networks to learn from the database and perform long-
term performance prediction of ground source heat 
pumps[10]. However, real-time outlet temperature 
prediction of the BTES system based on long-term 
experimental data has not yet been seen in the 
literature. 

This paper proposes a dynamic prediction method 
for the outlet temperature of the BTES system based on 
multi-channel parallel neural network model, which 
combines the requirement of matching real-time heat 
load for heat extraction in the actual operation of the 
BTES system. To train the neural network model, 11947 
hours of operating data from the 518,918 m3 BTES 
project in Chifeng, China is used as the dataset. Using the 
neural network model, the thermal response problem of 
BTES can be simplified into a machine learning predictive 
control problem, which can satisfy the demand for real-
time online optimal control and improve the safety, 
energy efficiency, and flexibility of the BTES-based 
heating system. 

2. METHODOLOGY  

2.1 Multi-channel parallel neural network 

The multi-channel parallel neural network structure 
is a type of neural network that is divided into multiple 
channels or sub-networks. Multi-channel parallelism 
increases the capacity of the model, and each channel 
can specialize in learning different features or patterns 
thus reducing the likelihood of overfitting in each 
channel. And because each channel can learn different 
features, it makes the model more adaptable to improve 
the robustness of the model. Finally, the results of 
different channel-specific predictions can be merged in 
different ways to generate the final prediction. This 
structure is commonly used to improve the performance 
and robustness of deep learning models. 
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As shown in Figure 1, the multi-channel parallel 

neural network used in this paper is mainly composed of 
several fully connected layers. The input features of the 
basic model include BTES inlet temperature, flow rate, 
and multiple groups of soil temperatures, totaling 14 
input features, and the output is the outlet temperature. 
However, due to uneven soil temperature distribution, 
slow heat transfer rate inside the BTES, and small short-
term changes in soil temperature away from the BTES U-
tube heat exchanger, there may be errors in the 
prediction of the basic model when the inlet 
temperature fluctuates significantly. Arranging the 
temperature sensors at the soil adjacent to the

 
U-tube heat exchanger of BTES can help solve this 
problem, but the construction difficulty is high. In this 
paper, another advanced model is proposed to add the 
inlet temperature, flow rate, and outlet temperature of 
the previous moment (hour) as input features on top of 
the original 14 input features, totaling 17 input features, 
to enable the algorithmic model to make more full use of 
the existing information and predict the outlet 
temperature at the current moment through data 
mining, which can help to improve the response 
accuracy. 

2.2 Description of the system studied 

The BTES system investigated was a 518, 918 m³ 
system located in Chifeng, China (42.28°N, 118.87°E)  
[11]. Figure 2 shows the layout of the BTES; it consists of 
468 boreholes spaced at 4 intervals, and each borehole 
is 80 m deep. Three temperature measurement 
boreholes are arranged from the inside to the outside, 
and a temperature measurement cable with four 

 
Fig. 1 Schematic diagram of multi-channel parallel neural 

network architecture 
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Fig. 2 Borehole layout and distribution of three 

temperature measuring boreholes (TMB) in one subzone 
of a borehole thermal energy storage system. Note: the 
four temperature sensors are at different depths in each 

TMB 

 
(a)                                   (b)                                 (c) 

Fig. 4 Long-term monitoring of soil temperature at different depths in various temperature measuring boreholes of a borehole 
thermal energy storage system: (a) No. 1 temperature measuring borehole; (b) No. 2 temperature measuring borehole; and (c) 

No. 3 temperature measuring borehole. 
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temperature sensors is arranged in each of the 
temperature measurement boreholes. 

 
The BTES system had been in operation since 

August 28, 2016, and has recorded 11,947 hours of data 
[12]. The system utilizes industrial waste heat recovered 
from a local copper plant and a solar hot water system as 
the heat source for seasonal thermal energy storage. The 
actual operational data is shown in Figure 3. The BTES 
inlet temperature fluctuates significantly due to the high 
instability of the solar and industrial waste heat sources. 
The monitored soil temperature is shown in Figure 4. 
After data cleaning the valid data was 11766 sets, which 
is 98.5%. Randomly divide the dataset into 60% as the 
training dataset, 20% as the validation dataset, and 20% 
as the test dataset. 

3. RESULTS 

After many optimizations, the final multi-channel 
parallel neural network adopted in this paper uses four 
parallel channels, each channel consists of six fully 
connected layers (the number of neural network nodes 
is 64, 64, 32, 32, 16, 16), and the last layer is directly 
connected to get 64 neural network nodes and the 
merged nodes are passed through seven fully connected 
layers (the number of neural networks nodes are 64, 64, 
32, 32, 16, 16, 1) final to the prediction results.  

Figure 5 shows the histogram of the error 
distribution (𝑇fluid_out_mea − 𝑇fluid_out_pre) between the 

measured temperature of the outlet fluid of the BTES 
system and the predicted temperature of the basic 
model (14 input features). The average absolute value of 

the error is 0.6 ℃, and the variance was 0.93 (℃)2. More 

than 83.4% of the outlet temperature prediction error is 

less than ±1℃. 

 
Figure 6 shows the histogram of the error 

distribution between the measured outlet temperature 
and the predicted outlet temperature of the advanced 
model (17 input features). The average absolute value of 

the error is 0.27 ℃, and the variance was 0.27 (℃)2. 

More than 97.4% of the outlet temperature prediction 

error is less than ±1℃. 
The computational results indicate that both the 

basic model and the advanced model proposed in this 
paper, based on neural networks, can accurately predict 
the outlet fluid temperature of the BTES system. 
Furthermore, the advanced model exhibits higher 
prediction accuracy. The reason is that the limitations of 
experimental conditions result in the temperature 
measurement point being relatively far from the U-
shaped heat exchanger of the BTES, resulting in low 
sensitivity of temperature data. The advanced model can 
rapidly and accurately predict the BTES outlet 
temperature, which implies that by continuously 
iterating with this model, the optimal flow rate can be 
found to match heat extraction with real-time heat 

 
Fig. 3 Long-term monitoring data of inlet and outlet 

temperatures and flow rate of the BTES system 
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Fig. 5 Distribution of the error between the measured 
temperature of the outlet fluid of the BTES system and 
the predicted temperature of the basic model (14 input 

features) 
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loads.

 
4. DISCUSSION 

The above multi-channel parallel neural network 
model provides an accurate estimation of the outlet 
temperature of the BTES system. The BTES system has 
great flexibility in heating as it can adjust the heat 
extraction by adjusting the heat extraction flow rate. The 
objective of sensitivity analysis is to understand the 
trend of heat extraction of the BTES system concerning 
the heat extraction flow rate. 

According to our previous research, the TRNSYS 
software embedded with the duct ground heat storage 
model can simulate the BTES system for long periods 
[13]. We take the actual parameters of the BTES system 
in Chifeng as the research object and simulate the heat 
storage flow range of 30 m³/h -300 m³/h and heat 
extraction flow range of 5 m³/h -300 m³/h, respectively. 
The long-period simulation of the system was carried out 
by using TRNSYS to invoke the duct ground heat storage 
model, and the annual heat extraction was calculated for 
different combinations of flow rates, as shown in Figure 
7. The results indicate that the heat extraction of the 
BTES system increases rapidly with the heat extraction 
flow rate and then levels off. 

 
Combining the calculation results with the actual 

heat demand, it is appropriate to moderately increase 
the heat storage flow rate during the heat storage period 
to extract more heat during the heat extraction period, 
and the heat extraction period should match the real-
time heat load by adjusting the heat extraction rate, 
which can reduce the use of the peaking gas boiler. Based 
on the method proposed in this paper can quickly and 
accurately predict the outlet fluid temperature at 
different inlet flow rates, which means that the real-time 
optimal heat extraction flow rate can be quickly 
calculated. The method proposed in this paper can meet 
the demand for online optimal control and improve the 
safety and flexibility of the operation of BTES-based 
heating systems.  
5. CONCLUSIONS 

In this study, a dynamic prediction method for the 
outlet fluid temperature of the BTES based on the multi-
channel parallel neural network model is proposed. Both 
the basic model and the advanced model used in the 
method have been validated based on long-term 
monitoring of a large BTES project in Chifeng. In the case 
study, the variance of outlet temperature prediction 

error is 0.93 ( ℃ )2 for the basic model with inlet 

temperature, flow rate, and multiple sets of soil 

temperatures as input features, and 0.27 (℃)2 for the 

advanced model with the addition of new inlet 
temperatures, outlet temperatures, and flow rates from 
the previous moment (hour) as input features. In 
addition, the effect of the heat extraction flow rate on 
the heat extraction of the BTES system is discussed. We 
conclude that the heat extraction of the BTES system 
increases rapidly with the heat extraction flow rate and 
then levels off. The results of the study emphasize the 

 
Fig. 6 Distribution of the error between the measured 
temperature of the outlet fluid of the BTES system and 
the predicted temperature of the advanced model (17 

input features) 
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Fig. 7 Annual heat extraction under different 

combinations of heat injection/extraction flow rates 
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importance of variable flow regulation for the flexible 
operation of BTES systems. 

Based on the method proposed in this paper can 
quickly and accurately predict the outlet fluid 
temperature at different inlet flow rates and 
temperature, which means that by continuously iterating 
the model, the optimal flow rate that matches the real-
time heat load can be found. The method proposed in 
this paper can meet the demand for online optimal 
control and improve the safety and flexibility of the 
operation of BTES-based heating systems. 
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