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ABSTRACT 

The energy management system and thermal 
control of fuel cell in fuel cell vehicles plays a crucial role 
in ensuring their stable and efficient operation. This 
study presents a novel fuel cell powertrain energy 
management system control strategy considered the 
temperature fluctuation based on deep reinforcement 
learning. A comprehensive SIMULINK model, 
encompassing fuel cell cooling system and stack models, 
was constructed for the fuel cell, followed by simulation 
testing under various temperature scenarios. To validate 
the robustness and stability of the control system, the 
standard operating conditions - US06 were employed for 
experimental verification. The experimental results 
highlight the effectiveness of the designed fuel cell 
energy management system in achieving transient 
temperature stabilization. Additionally, the results 
revealed that stable operation temperatures correlate 
with reduced hydrogen consumption. Furthermore, it's 
noted that fuel cell hydrogen consumption displays 
substantial variation under uniform operating conditions 
at varying temperatures. This highlights the key role of 
temperature in fuel cell performance. These findings 
serve as valuable reference points for the refinement of 
energy management system designs with thermal 
control of fuel cell, contributing to the advancement of 
fuel cell vehicle technology. 
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NONMENCLATURE 

Abbreviations  
 PEMFC proton exchange membrane fuel cell 
 EMS energy management system 

 ECM 
Equivalent consumption 
minimization strategy 

 DQL deep Q learning 
 SOC the stat of charge 
Symbols  
 Enerst the Nernst electromotive force 
 Vact activation overpotential 
 Vohm ohmic overpotential 
 Vcon concentration overpotential 
 Ncell the number of cell units 
 MH2 the molar mass of hydrogen gas 
 F the Faraday constant 
 Paux the parasitic power of the system 
 LHVH2 the low calorific value of hydrogen 
 Pb the output power of battery 
 Ub the output voltage of battery 
 E The open circuit voltage of battery 
 Rb the internal resistance of battery 

 b the battery efficiency 

 Qb 
the rated capacity of a lithium 
battery 

 R the immediate reward 
 a the action of agent 

1. INTRODUCTION 
Presently, the progress of electric vehicles faces 

constraints, primarily related to factors such as range 
limitations and battery life. The adoption and utilization 
of fuel cells offer a promising solution to address the 
endurance challenges in electric vehicles.[1],[2] Among 
various types of fuel cells, proton exchange membrane 
fuel cell (PEMFC) has been widely used in the field of 
transportation and energy due to its advantages such as 
small size, long service life, low pollution, low operating 
temperature, high power generation efficiency, and fast 
start-up and shutdown.[3] Nevertheless, comprehensive 
research and development efforts dedicated to the 
performance and reliability of fuel cell vehicles remain 
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essential prerequisites for their further 
commercialization. Among the most critical research 
domains, the integration and thermal control of fuel cell 
systems for fuel cell vehicles play a key role. 

The thermal system of fuel cell vehicles mainly 
includes PEMFC stack temperature control. The 
placement and control strategy of the thermal 
management system determines vehicle performance 
and efficiency.[4] During the operation of fuel cell 
vehicles, the PEMFC stack releases a large amount of 
waste heat during the power generation process, which 
affects the output power of the stack. During the 
operation of fuel cell vehicle, the PEMFC produce a 
substantial amount of waste heat , which subsequently 
influences the stack's power output.[5] For example, an 
increase in operating temperature can increase the 
catalyst activity of the gas diffusion layer, while also 
increasing the saturated vapor pressure of water and 
accelerating the evaporation rate of water, resulting in a 
decrease in the polymer electrolyte content in the 
proton exchange membrane and catalyst layer and an 
increase in ohmic losses. On the contrary, if the 
temperature of the stack is low, the catalyst cannot reach 
the most active point, the reaction rate slows down, and 
the corresponding operating point cannot be reached 
during rapid load changes, which affects the life of the 
stack.[6] In addition, frequent fluctuations in temperature 
can also cause thermal fatigue of the membrane layer 
accelerates the aging of the proton exchange membrane 
and catalyst layer, and uneven temperature distribution 
will also reduce the output voltage and power of the 
stack. Therefore, this heat must be effectively dissipated 
to avoid degradation of fuel cell performance and 
durability. So, how to establish an integrated thermal 
management system and design a reasonable control 
strategy is the main difficulty in the current development 
of fuel cell vehicles. The purpose of the integrated 
thermal management system for fuel cells is to integrate 
all subsystems into one.[7] However, there is currently 
relatively little literature on such integrated thermal 
management, with most of the literature related to 
electric vehicles and hybrid vehicles. Wang et al. 
constructed a fuel cell vehicle cooling system that 
integrates target components, including a fuel cell stack, 
DC/DC, drive motor, and air compressor. The simulation 
results investigated the impact of temperature on the 
stack and thermal management system, and analyzed 
the impact of high load conditions on the thermal 
capacity of the system.[8] Xu developed an integrated 
thermal management model utilizing KULI software, with 

a specific emphasis on analyzing heat generation and 
transfer mechanisms in components such as engines, 
fuel cells, and air boosters. The model incorporated PID 
algorithms to control the water pump and fan speeds. 
Simulation outcomes demonstrated that the maximum 
coolant outlet temperature of the fuel cell and motor, 
along with the maximum air inlet temperature of the fuel 
cell, remained within permissible limits, thus validating 
the soundness of the proposed system.[9] Xing et al. 
proposed a vehicle integrated thermal management 
system model for fuel cell/lithium battery hybrid vehicles 
and analyzed the characteristics of a 30kW PEMFC 
battery pack under its cooling system conditions under 
actual driving conditions.[10] However, the above 
research mainly focuses on obtaining the optimal 
temperature of the fuel cell stack based on the optimal 
performance or efficiency of the stack, and then 
proposes traditional control algorithms (such as fuzzy 
logic control, self disturbance rejection control, etc.) to 
achieve the optimal temperature of the fuel cell. There is 
less research on intelligent control algorithms, which 
have better control effects and faster response time 
compared to traditional control algorithms. Considering 
the above issues, this article proposes a fuel cell vehicle 
energy management system based on reinforcement 
learning that takes into account both fuel cell thermal 
management and provides a virtual platform for system 
integration and powertrain coupling analysis. The 
thermal management control strategy of fuel cell 
proposed in this study integrates energy management 
strategies to better support simulation experiments. 
Simulations were conducted in various standard 
operating conditions to analyze the operating 
mechanism, thermal performance, and coupling 
phenomena of each key thermal system. The research 
results of this article demonstrate the rationality of the 
system model and control strategy, which can be used 
for the design and development of fuel cell vehicle 
energy management systems and the thermal control of 
fuel cell. 

The organizational structure of this article is as 
follows. Firstly, it introduces the thermal management 
structure, theoretical model, and cooling system of fuel 
cell vehicles; Subsequently, a fuel cell thermal 
management model and corresponding algorithm 
principles were proposed, and the training process and 
simulation results were presented in Section 4, and 
summarized in Section 5. 
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2. MODEL 
In order to study the operational characteristics of 

various components of the thermal management 
system, analyze the impact of coupling of various heat 
sources in practical applications, and study control 
strategies, a fuel cell powertrain model based on actual 
vehicles is proposed. The powertrain of the vehicle 
includes a 65kW PEMFC and a 1.6 kWh lithium-ion 
battery. This model considers the cooling of a hybrid 
power system with integrated fuel cells and lithium-ion 
batteries. As shown in Fig. 1. 

EMS

Li-ion Battery

PEMFC DC-DC

DC-AC Motor

 
Fig. 1. The Structural schematic diagram of FCV 

Stack

Radiator

Water Tank

Water Pump

 
Fig. 2. The Cooling Circuit of fuel cell 

2.1 System Configure  

The key components of the powertrain thermal 
management system include PEMFC stack, coolant 
pumps, and air compressors. The model is established 
based on the main structural information and test data 
provided by the supplier, mainly focusing on one-
dimensional heat generation and energy exchange 
mechanisms. Due to the similarity of modeling methods, 
the modeling principles of similar components in the 
drive system and other cooling circuits will no longer be 
repeated below.  

2.2 Fuel Cell 

2.2.1 The Electrical Model of Fuel Cell 

During the operation of a fuel cell, irreversible losses 
of its electrodes are inevitable during the energy 
conversion process. The expression for the output 
voltage V of the fuel cell is: 

nernst lossV E V= −  (1) 

Where Enerst is the Nernst electromotive force. 
Without considering losses, the Nernst electromotive 
force can be obtained based on the Nernst equation and 
the variation of Gibbs free energy. 
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Among them, the irreversible loss of overpotential 
in fuel cells mainly includes activation overpotential Vact, 
ohmic overpotential Vohm, and concentration 
overpotential Vcon. Among them, the activation 
overpotential and concentration overpotential can be 
calculated by empirical formulas 

loss act ohmic conV V V V+ +=  (3) 

In the formula, T is the operating temperature of the 

battery stack, CO2 is the oxygen concentration dissolved 

at the gas-liquid interface in the battery stack, and B is a 

constant that depends on the fuel cell and its operating 

state; ilim Represents the actual current density of the stack; 

Represents the ultimate current density in a fuel cell stack. 

The hydrogen consumption of fuel cells is represented as 

follows: 
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Where Ncell represents the number of cell units in 
the fuel cell, MH2 represents the molar mass of hydrogen 
gas, F is the Faraday constant, and I is the output current 
of the fuel cell. Therefore, the heat generation of fuel cell 
stacks is as follows: 
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Where LHVH2 represents the low calorific value of 
hydrogen and Paux represents the parasitic power of the 
system.  
2.2.2 The Thermal Model of Fuel cell 

The thermal model of the fuel cell is shown in the 
Fig. 2, following the law of energy conservation and the 
heat balance equation. The stack temperature of the fuel 
cell is mainly determined by the heat generated during 
operation minus the heat carried away. 

st st
heat st st cells st equal

dT E
Q C m N I E

dt N

 
= =  − 

 
  (6) 

Where Cst is the specific heat capacity of the proton 
exchange membrane fuel cell stack (kJ/K × kg); mst is the 
mass of the stack; Tst is the stack temperature; Eequal is 
the equal voltage of the stack; Est is the output voltage of 
the fuel cell; N is cells number; Ist is the current of the fuel 
cell. The heat dissipation of a radiator is mainly related 
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to air flow rate and environmental temperature 
difference. 

2.3 Li-ion Battery 

This article uses an internal resistance model to 
establish a one-dimensional model for lithium-ion 
batteries, as shown in the following equation. 

2 4

2

b b

b

b

E E R P
I

R

− −
=  (7) 

In the formula, Pb represents output power, Ub 
represents output voltage, Ib represents lithium battery 
current, and E represents open circuit voltage; Rb 
represents internal resistance. The current of a lithium 
battery can be calculated based on its output power. The 
state of charge (SOC) of lithium batteries is a key control 
parameter in energy management strategies. This article 
uses the ampere hour integration method to calculate 
SOC: 
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Where SOC(t) represents the current SOC value of 
the lithium battery and SOC0 represents the initial SOC 

value of the lithium battery; b Represents battery 
efficiency; Qb represents the rated capacity of a lithium 
battery. The voltage and capacity of its battery pack are 
shown below. 

modbat batcell NVV =  (9) 

Therefore, the voltage and capacity of the battery 
pack are 48V and 35Ah, respectively. The heat 
generation during its discharge process is shown below. 

3. METHOD 
Deep Q Learning (DQL) is a deep reinforcement 

learning algorithm based on deep Q learning, used to 
solve the problem of continuous action space. Its core is 
the optimization of the deep neural networks by 
optimizing weight. The energy management strategy 
framework and design are based on DQL algorithm 
mainly consists of several parts, such as deep Q network, 
weight updating, gradient, policy, mini batch and 
experience pool, as shown in the Fig. 3. 

 
Fig. 3. Energy Management Strategy Framework Based 

on DQL Algorithm 
Enviroment State: The required power of the entire 

vehicle, the SOC of the lithium battery, and the 
temperature composition state space of the fuel cell 
system [Preq, SOC, Tfc]; 

Control Action: The output power of the fuel cell is a 
control action, which is different from the DQL algorithm. 
DQL directly outputs the action to the system through 
the Q network. 

Reward function: The reward function directly 
affects the adjustment of deep network parameters. This 
article takes hydrogen consumption as the main 
indicator, while considering the retention capacity of 
lithium battery SOC, temperature changes in fuel cells, 
and fuel cell attenuation, and designs the following 
reward function: 
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Where R is the immediate reward for taking action 

a in state s to state s'; Fuel represents hydrogen co

nsumption; ΔT represents the rate of change in tem

perature. 

4. TRAINING AND SIMULATION RESULT 
This section provides a comprehensive analysis of 

the proposed DQL based energy management strategy. 
Prior to validation, the network was trained and the 
simulation results were analyzed and discussed. 

4.1 Training Setting 

In this study, the Fuel Cell Energy Management 
System is trained and validated using the US06 operating 
conditions, as illustrated in the Fig. 4. The simulation 
results of the DQL-based energy management system 
are then compared and elucidated alongside those of the 
ECM-based energy management system. 
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Fig. 4. The Velocity of US06 
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Fig. 5. The power request of US06 

4.2 Impact of the reward settings on convergence 

Fig. 6 Fig. 6. The reward of DQL–EMS training 
progressillustrates the training progression of the energy 
management system for fuel cell vehicles. It 
demonstrates the evolution of the reward function in 
relation to the number of training iterations. As depicted, 
the DQL agent engages in continuous exploration from 
episodes 0 to 130, aimed at maximizing the reward 
function value. Over the course of 290 iterations, the 
neural network progressively stabilizes across episodes, 
thereby facilitating the exploration of an improved global 
optimal solution. Ultimately, as indicated in the figure, 
the system reaches a state of gradual stabilization after 
280 iterations. 
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Fig. 6. The reward of DQL–EMS training progress 

4.3 Simulation results and analysis 

In evaluating the effectiveness of the proposed DQL 
strategy, the assessment of fuel cell vehicles under US06 
standard operating conditions encompasses three vital 
dimensions: State of Charge (SOC) maintenance, 
hydrogen consumption optimization, and temperature 

regulation. These dimensions will be further elucidated 
in the subsequent sections. 

4.3.1 Battery’s charge-sustaining 

Fig. 7. SOC trajectory of DQL -EMS and ECM-EMSdisplays the 
State of Charge (SOC) trajectory of the lithium battery 
within DQL-EMS. The DQL-EMS consistently regulates 
the fuel cell power to remain under 50kW. Notably, 
during acceleration phases, the system optimally strives 
to maintain fuel cell power as close to 50kW as possible, 
thereby preserving the initial and final SOC states. This 
strategy effectively reduces the load on the lithium 
batteries, as depicted in Fig. 7. The SOC states are 
evidently maintained at approximately 0.6, attesting to 
the success of our proposed DQL-based EMS in achieving 
charge maintenance. 
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Fig. 7. SOC trajectory of DQL -EMS and ECM-EMS 

4.3.2 Optimality of operational cost 

Fuel cell operational expenditures are primarily driven by 
hydrogen consumption. To assess the cost-effectiveness 
of our DQL-EMS, we employ Equivalent Consumption 
Minimization (ECM) as a benchmark for validation. The 
Fig. 8 presents hydrogen consumption fluctuations at 
different time points. Evidently, maintaining stable fuel 
cell power during charge maintenance mode emerges as 
a cost-effective strategy. In essence, our proposed DQL-
EMS effectively reduces hydrogen consumption, thus 
curbing operational costs. 
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Fig. 8. H2 consumption of DQL -EMS and ECM-EMS 

4.3.3 Temperature 

The temperature dynamics in fuel cells predominantly 
arise from the waste heat generated during their 
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operation, as shown in the Fig. 9. Given the critical need 
to sustain the fuel cell at its optimal operating 
temperature, approximately 80 degrees Celsius, this 
study emphasizes the reduction of power conversion 
frequency. By minimizing the frequency of power output 
transitions, this research aims to ensure the fuel cell 
remains within a high-efficiency power output range, 
thus enhancing its overall operational efficiency. 
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Fig. 9. The heat of chemical reaction of Fuel Cell 

5. CONCLUSION 
This study reports a fuel cell energy management 

strategy based on deep reinforcement learning, which 
considers the temperature dynamic of fuel cells. In order 
to maintain the optimal temperature for fuel cell 
operation and the consistency of SOC initial and final 
states, an optimization method based on reinforcement 
learning is proposed, which can adjust and optimize the 
strategy online. Based on the vehicle model, an energy 
management problem is created using a reinforcement 
learning structure, and then solved using one of the most 
advanced DRL algorithms, DQL. A random training 
environment based on US06 is used to generate realistic 
simulations and prevent overfitting. Complete training 
by interacting with the environment through DQL agents. 
After training, the simulation results show that the 
proposed strategy has good ability in maintaining the 
consistency of SOC initial and final states and the thermal 
stability of fuel cells. In addition, the strategy was 
compared with an energy management strategy based 
on ECM, and the results showed that the strategy had 
lower fuel consumption and better thermal stability. 
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