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ABSTRACT 
When fast and accurate detection is crucial, such as 

in cases of pipeline leakage accidents, machine learning 
is a powerful tool for integrating real data with artificial 
intelligence. In this context, this study introduces reliable 
artificial neural network (ANN) models that are intended 
to precisely locate single or several leaks in undersea gas 
pipelines. Using OLGA multiphase software, thorough 
data for numerous leak scenarios are generated under 
multiphase flow conditions and based on an actual 
offshore pipeline profile. These data cover measurable 
flow variables (mass flow rate, temperature, and 
pressure) at the inlet and outlet of the monitored 
pipeline. The developed ANN models were trained to 
estimate the leak’s location(s) and size(s) under single 
leak as well as multiple leak conditions, which have not 
been investigated before in open literature. The findings 
show that for single leak scenarios, the ANN models can 
detect and identify the leak size and location with an 
error of less than 1.0% across all phase flow scenarios. 
The leak localization error, however, is higher than 8.0% 
under multiple leak conditions. The outcomes of this 
study also show that the accuracy of the ANN models is 
significantly influenced by the phase flow conditions and 
number of ANN input parameters. To improve ANN 
performance and minimize the impact of noise signals, it 
is suggested to employ a multi-stage leak identification 
technique. To do this, an ANN model with two inputs 
must be utilized first, and subsequently, a model with six 
inputs must be progressively added. In this study, our 
approach and methods for generating leak-based data 
and identifying leaks in multiphase flow and various leak 
conditions can serve as a foundation for enhancing the 
efficiency and reliability of future machine learning-
based leak detection systems. 

Keywords: offshore gas pipelines; leak detection; leak 
localization; multiple leaks; multiphase flow; artificial 
neural network.   

NONMENCLATURE 

Abbreviations 
ANN Artificial neural networks 
CCA Cross-correlation analysis 
CPS-TLM GPS- Time label method 
CNN convolutional neural network 
HA Harmonic analysis 
GMM Gaussian mixture models 
LDA Leak detection accuracy 
LLA Leak localization accuracy 
LMD Local mean decomposition 
LSA Leak size accuracy 
NPW Negative pressure wave 
NNA Neural network analysis 
PPA Pressure point analysis 
RST Rough set theory 
SEM State estimation method 
SIM System identification method 
SRM Supervised regression model 
SVM Support vector machine 
TTBTs Transient test-based techniques 
V/MB Volume/mass balance 

1. INTRODUCTION
In 2020, natural gas supplied about 30% of the

world's energy [1], [2], [3], reflecting the world's growing 
energy demand over the years. The natural gas pipeline 
system, which covers more than 2.2 million miles 
globally, is principally responsible for the transfer of 
natural gas products from the source to the end 
consumers [4]. However, with time, material flaws, 
abrasion, corrosion, and environmental variables harshly 
affected the pipeline networks, significantly reducing 
their integrity [5], which then resulted in leakage [6], [7]. 
The effects of gas pipeline leaks are significant, ranging 
from the incurrence of enormous costs to severe 
environmental degradation. Over the last thirty years, 
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pipeline accidents in the United States alone have 
resulted in nearly $7 billion in damages [8] and numerous 
injuries. A notable incident occurred in late September to 
early October 2022 when substantial leaks of natural gas 
from the Nord Stream pipelines in the Baltic Sea near 
Denmark released approximately 220,000 tonnes of 
methane into the atmosphere [9], exacerbating global 
climate change. Therefore, it is urgently necessary to find 
efficient and practical ways to stop leaks in these pipeline 
networks.   

Pipeline leak detection methods fall into two main 
categories: hardware-based and software-based 
techniques [10]. Hardware methods rely on physical 
sensors placed externally on the pipeline to detect 
escaping substances [11]. These sensors, including 
acoustic sensors [14], [15], fiber optic sensors [12], [13], 
and ground penetration radar [16], monitor changes in 
sound waves, pressure, or temperature that may 
indicate a leak. Fiber optic sensors utilize light to sense 
alterations in temperature and pressure [17], while 
acoustic sensors pick up sound waves produced by the 
escaping substance [18]. Ground penetration radar 
employs radio waves to detect changes in soil 
conductivity resulting from the escaping substance, 
aiding in leak localization [19]. 

Software methods employ algorithms and models 
[20] to monitor flow parameters, including PPA, NPA, 
and dynamic modeling [21]. PPA entails tracking 
pressure changes at different pipeline points to identify 
potential leaks [22]. NPW involves generating a pressure 
wave and measuring its travel time along the pipeline; 
deviations indicate leaks [23]. Dynamic modeling utilizes 
computer simulations to replicate pipeline flow 
conditions, offering high-precision leak detection and 
addressing data acquisition limitations. In-depth 
comparisons of these methods can be found in valuable 
review studies such as References [25], [26]. Table 1 
provides a qualitative analysis of the performance 
indicators for software-based leak detection methods. 
   Dynamic modeling has traditionally been used to 
simulate and analyze hypothetical leak scenarios in oil 
and gas pipelines. However, it has limitations when it 
comes to real-time leak detection and demands 
substantial resources for execution. Consequently, 
machine learning has emerged as a more practical 
alternative. Machine learning employs algorithms that 
improve their performance through experience, allowing 
the development of mathematical models based on 
sample data. These models can swiftly and accurately 
predict or make decisions without the need for explicit 
programming. As a result, machine learning proves to be 

a valuable tool in connecting real data with artificial 
intelligence, particularly in critical areas like the rapid 
and precise detection of pipeline leaks [27]. 
 
Table 1. Qualitative analysis of the performance indicators of 

the various data-driven leak detection methods (Adapted 
from [28]). 
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V/MB   ⚫     

NPW ✓   ⚫   ⚫ ⚫ 

GPS-TLM ✓   ⚫   ⚫ ⚫ 

PPA   ⚫ ⚫   ⚫ ⚫ 

CCA ✓ ⚫  ⚫  ⚫ ⚫ ⚫ 

TTBTs ✓ ⚫ ⚫ ⚫ ⚫   ⚫ 

SEM ✓ ⚫  ⚫ ⚫   

SIM ✓ ⚫  ⚫ ⚫   

NNA ✓     ⚫  

HA ✓ ⚫ ⚫ ⚫ ⚫   ⚫ 

Le
ge

n
d

 ✓= Can,  = Canot,  ⚫= General,  

= Good, Fast, Strong, =Low, (advantage) 
= High, = Poor, Slow, Weak,    

(disadvantage) 

As indicated in Table 2, several research studies have 
utilized machine learning-based methods, including 
Gaussian mixture models, support vector machines 
(SVM), artificial neural networks (ANN), gradient 
boosting, decision trees, random forests, and deep 
learning techniques, for the purpose of detecting leaks in 
oil and gas pipelines. The majority of these studies have 
demonstrated remarkable precision in identifying, 
localizing, and categorizing leaks, achieving accuracy 
rates ranging from 90% to 99.4%. However, it is worth 
noting that while there is substantial research in the 
context of oil pipelines, there is a scarcity of machine 
learning-based studies focusing on leak detection in 
natural gas pipelines. Notably, Akinsete et al. [29], Xiao 
et al. [30], and Kim et al. [8] have investigated the 
detection of small leaks in gas pipelines using SVM 
and/or ANN-based models. 

However, the data employed in their models was 
either single-phase flow-only or did not accurately reflect 
how the gas pipes actually operated. Additionally, the 
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connection between the input and outlet flow 
characteristics and the size and location of the leak were 
not examined. It is also important to note that there is no 
study that examines the performance of ANN-based 
models (or other machine learning techniques) under 
multiple leak conditions that is publicly available in the 
literature. The studies mentioned above only looked into 
one leak detection scenario. 

 
Table 2. Accuracy of available leak detection studies in oil/gas 

pipelines using machine learning-based methods*. 

Refs. Method Accuracy indicator 

[8] ANN  R2=0.987. 

[31] ANN 90-95% (LDA)   

[32] ANN, Catboost R2=0.98 (Catboost) 

[29] ANN, SVM R2=0.998. 

[33] CNN  97% (LDA), 96% (LLA) 

[30] SVM 99.4% (LDA), 95.6% (LSA)  

[34] SVM+RST  95.17% (LDA)  

[35] SRM CFD-based data, R2=0.998  

[36] LMD + CasSVM 97.5% (LDA) 

 
This paper proposes ANN models for precise leak 

detection and localization in offshore natural gas 
pipelines based on extensive data for single-, and 
multiphase flow conditions to fill the aforementioned 
shortcomings. This study also intended to determine 
how the ANN input settings affected the effectiveness of 
leak localization and detection. This study also examined 
pipeline flow and ANN-based models under various leak 
scenarios. The primary contributions of the current work 
can be summarized as follows:  

a) Analyzing the leak detection parameters for 
single- and multiphase flow circumstances. 

b) (b) Establishing systematic methods for 
generating data that can be utilized to build 
several data-driven models for leak detection. 

c) (c) Evaluating the gas pipeline flow and 
examining how well the ANN-based leak 
identification model performs in various leak 
scenarios. 

 
2. FLOWSHEET OF THE NEW LH2 PRODUCTION 

SYSTEM 
    The pipeline profile of an actual pipeline is used in 
the OLGA model of this study to create data for various 
leak sizes and locations which reflect actual field data. In 
the western offshore region of Myanmar, in the Bay of 
Bengal, this pipeline is in operation. The pipeline system, 

which has a 13 km length and a water depth range of 100 
to 180 meters, is depicted in Fig. 1. Sensors placed at 
both ends of the pipe are used during the transit process 
to collect field data, such as flow rate, pressure, and 
temperature. As suggested in this study, the data 
gathered from these sensors can be utilized to examine 
flow behavior to identify leaks. 

 
Fig. 1. OLGA pipeline profile (adapted from [8]. 

   The material, dimensions, and boundary conditions 
of the pipeline must be established in order to simulate 
the flow behavior. Table 3 lists the key details of the 
pipeline geometry and flow characteristics. 

Table 3. Design inputs for the pipeline model in OLGA.  
Boundary Conditions 

Fluid  Natural Gas  

Mass flow (kg/s) 65.0 

Inlet temperature (oC)  53.0 

Outlet temperature (oC) 27.0 

Ambient temperature (oC) 12. 

Uoverall (W/m2-C) 200 

Outlet pressure (bar) 83.0 

Pipeline model specifications 

Material Steel 

Pipe thickness (mm) 9.0 

Insulation thickness (mm) 20.0 

Wall roughness (mm) 0.05 

Pipe diameter (cm) 32.0 

Pipe length (km) 13.0 

# of sections  338 

Section size (m) 50  

 
3. METHODOLOGY 

 

3.1 Data generation and validation   

As depicted in Fig. 2, the PVT (pressure-volume-
temperature [37]) file is first generated to be used in the 
OLGA-based pipeline model. This is done using an OLGA 
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Multiflash module to define the NG composition and its 
thermophysical properties. To precisely mimic the 
behavior of the gas in the pipeline, the PVT file comprises 
the thermodynamic parameters of the gas, including 
density, viscosity, and compressibility. 

 
The pipeline geometry in OLGA was built using the 

pipeline profile depicted in Fig. 1. The pipeline's 
dimensions, layout, flow characteristics, and boundary 
conditions were entered into OLGA according to Table 3. 
's specifications. The outcomes of the single-phase 
model are verified against actual field data, as will be 
explained below, before modeling the leak scenarios 
under multiphase situations. After that, since the ANN 
model requires a lot of data to be trained, the following 
comprehensive leak scenarios were set up and run:  (1) 
The position of the leak was varied from 50 m to 12950 
m with steps of 50 m, (2) At each leak location, the flow 
is simulated for a variety of leak sizes, ranging from 0.5 
cm to 5 cm with steps of 0.5 cm, (3) For each phase flow, 
a total of 2590 data points were produced. 

 
Fig. 2. Data generation, ANN training, and testing procedures. 

 

After being normalized, the collected data are 
exported to MATLAB program where they are used to 
train, validate, and test the ANN model. The ANN-based 
data are then processed to Excel software for additional 
analysis if the model satisfies the error standards (for 
example, average relative error less than 1.0%). The 
model configuration is improved and altered until the 
error requirements are satisfied if the model fails to 
meet them. 

In this work, the pressure profile derived by OLGA is 
compared with the real-field-based pressure profile as 
shown in Fig. 3 in order to validate the OLGA pipeline 
model. The real-field data used in this study's pipeline 
was sourced from [8]. Since there are no real-filed data 
for multiphase flow conditions, the validation process 
was done for single-phase flow conditions (with free 
leak). This comparison serves to validate the study's 
simulation strategy and methodology. The simulated 
pressure profile fits the real-filed profile with a relative 
error of less than 1%, as illustrated in Fig. 3. 

 
Fig. 3. Model pressure profile compared to real field data-

based profile at “free” conditions. 

The experimental data for a single leak and single-
phase flow, available in [41], were also utilized to 
validate the accuracy of the OLGA model in predicting 
leak-based data. The experimental data were obtained 
from measurements conducted on a water pipeline with 
a total length of 1.6 m, an inner diameter of 12.7 mm, 
and an inlet flow rate of 0.32 kg/s. The measurements 
were taken under two conditions: "no leak" (with a leak 
percentage, LP, of 0%) and with a single leak positioned 
at x=0.73 m from the inlet of the pipe. As depicted in Fig. 
4, the size of the leak was varied to obtain data for three 
different LPs (17%, 31%, and 50%). In OLGA software, the 
pipeline profile was created as a straight pipeline, and 
the boundary conditions were set to match the real 
experimental conditions. Subsequently, the pressure 
profiles data were generated in OLGA for both "no leak" 
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and single leak conditions and plotted alongside the 
experimental data for comparative analysis (see Fig. 4). 
It is noteworthy that the OLGA data exhibit a 
commendable agreement with the experimental data, 
displaying a maximum absolute error of less than 3.04%. 
This result underscores the capability of the OLGA model 
to generate leak-based data with sufficient accuracy for 
training artificial neural network (ANN) models. 

 
Fig. 4. Validation of OLGA model with experimental data 

under “no leak” and single leak conditions. 

 

3.2 Machine learning model 

For the ANN model for each phase flow in this study, 
a total of 2590 OLGA-based data points are utilized. 
Training data make up 70% of the data, followed by 
validation data (15%), and testing data (15%).  

 
Fig. 5. ANN model Structure. 

As illustrated in Fig. 5, the six input variables (six 
inputs group, SIG) employed for the neural network 
structure are the inlet and outlet temperature pressure, 
and flow rates. After that, utilizing the four-input group 
(FIG) and two-input group (TIG), the training, testing, and 

validation process is repeated. FIG includes outlet flow 
rate, outlet/inlet temperatures, and inlet pressure. Only 
the outlet mass flow, and inlet pressure are included in 
the TIG. These sets are created to look at how the ANN's 
input parameters affect the precision of leak detection 
and localization.     

3.3 Data generation for multiple leaks analysis  

 The study involves evaluating the performance of 
an Artificial Neural Network (ANN)-based model for 
detecting leaks in pipelines. Initially, the model was 
analyzed for single leak detection in both single-phase 
and multiphase flow conditions. To extend its capabilities 
to multiple leak detection, the authors created a diverse 
dataset strategy. They divided the pipeline into sections 
consisting of ten joints each as shown in Fig. 6(a). 

For single leak scenarios, data were generated at ten 
different locations along the pipeline, with three 
different leak sizes. This resulted in 30 datasets (Fig. 
6(b)). For two leak scenarios, leak locations were 
systematically varied between joints, and leak sizes were 
adjusted, creating 45 sets of leak locations and nine 
groups of leak sizes, totaling 405 datasets (Fig. 6(c)). 
Similarly, for three leak scenarios, the researchers 
systematically adjusted leak locations and sizes, yielding 
15 groups with 83 leak location sets each, totaling 1245 
datasets (Fig. 6(d)). In total, 1680 datasets were 
generated, including data for input and output pressure, 
temperature, and mass flow. These datasets were then 
used to train and test the ANN model's performance in 
detecting multiple leaks. 

4. RESULTS AND DISCUSSION 

4.1 Single, two-, and multiphase flow analysis 

This study examines the flow of natural gas in single- 
and two-phase flow scenarios in an offshore 
transmission pipeline. Three-phase flow refers to the 
flow of gas, water, and a trace amount of oil. Single-
phase flow refers to the passage of gas alone. Two-phase 
flow refers to the flow of gas and liquid (often water). 
The fluctuations of the flow pressure, temperature, gas 
velocity, gas density, and gas flow across the pipeline 
length at the boundary conditions specified in Section 2 
are simulated in the "free leak" scenario and shown in 
Fig. 7. 

From Fig. 7, it is found that the gas velocity starts 
decreasing until about 4000 m and increases in the 
remaining length of the pipeline. This is basically 
explained by the nature of the actual pipeline profile as 
it starts with ramp direction then horizontal direction 
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after 6000 m. In addition, the temperature profile starts 
from the hot inlet temperature and decreases over the 
length of the pipeline due to the heat transfer process to 
the sea water. This yields a parabolic change in the gas 
density profiles which opposes the gas velocity and 
temperature behavior. This explains the linear decrease 
in the pipeline pressure. 

 

Fig. 6. Variation of leak location and number for multi-leak 
data generation. 

The total mass flow rate curve shows constant flow 
under free leak conditions. This curve will be considered 
as a reference to compare the flow rate profile with 

“leak” conditions. Now, if we put a leak at any location of 
the pipeline, will this generate significant difference on 
the inlet/outlet flow parameters? To answer this, sample 
of the results under “single leak” conditions are 
presented in Fig. 8, Fig. 9 and Fig. 10. 

 

Fig. 7. Pressure, temperature, gas velocity, density, and mass 
flow rate over the pipeline length under “free leak” 

conditions (two-phase flow).  

 

Fig. 8. Pressure profile for sample “leak” at 6500 m. 

    Fig. 8 shows the same parameters of Fig. 7 but 
with a single leak at 6500 m with leak size of 3.0 cm. it 
can be noted that the temperature profile is mostly the 
same as “free leak” profile. However, the inlet pressure 
is reduced from 114 bar (at “free leak”) to 110 bar. Also, 
the outlet mass flow rate is reducing from the 65 kg/s to 
53 kg/s. This reduction in the mass flow is noticeable due 
to the large size of the leak. However, for leaks with size 
lea than 0.50 cm, the reduction in the mass flow rate 
becomes very small (for single leak case).  

In this context, we can note that the variation of the 
inlet pressure and outlet flow rate is more noticeable 
than of the change in the other parameters (inlet/outlet 



7 

temperatures). Therefore, these parameters are 
considered as basic input for the ANN models. However, 
the other inputs can be used as inputs to the ANN model 
to enhance its accuracy. However, using only two inputs 
will yield more robust results as the ANN will be less 
sensitive for noise signals.           

 

Fig. 9. Pressure and mass flow profiles for sample “leak” at 
6500 m with three different leak sizes. 

 

Fig. 10. Pressure and mass flow profiles for sample 
“leak” at 6500 m with three different mass flow rates. 

Fig. 9 and Fig. 10 shows that different data set can be 
generated for different leak sizes, and different flow 
rates. Similarly, data can be generated for different 
pipeline diameters, outlet pressures, and other ambient 
conditions than those presented in the design condition 
discussed in Section 2. This is a necessary step to create 
comprehensive data for the ANN models. Based on these 

data, the ANN model will be able to detect leak size and 
locations under different operating conditions and 
transformable for different pipeline profiles and design 
conditions. Therefore, the ANN models were trained 
using comprehensive data generation strategy as 
discussed in Section 3.  

4.2 Machine learning results 

Table 4 displays the Absolute Relative Error (ARE) of 
an ANN model, averaged across three distinct data sets 
representing single-phase, two-phase, and three-phase 
flow conditions in offshore natural gas pipelines. The 
ANN model was trained and tested with varying numbers 
of input parameters (SIG, FIG, and TIG). 

In the case of single-phase data, the ANN model 
achieved the lowest ARE for both leak size (0.1%) and 
leak location (0.6%) when trained and tested with six 
input parameters. When four input parameters were 
used, the ARE for leak size remained at 0.1%, but the 
accuracy for leak location slightly decreased to 1.4%. The 
model with only two input parameters exhibited the 
highest ARE values, with 0.9% for leak size and 4.8% for 
leak location, indicating a notable reduction in accuracy. 

For two-phase data, the ANN model with four input 
parameters demonstrated the best performance with 
ARE values of 0.2% for leak size and 1.1% for leak 
location. Conversely, the model trained and tested with 
six input parameters had higher ARE values (0.6% for leak 
size and 2.3% for leak location). The model using only 
two input parameters had the lowest accuracy for leak 
size (0.3%) but the highest accuracy for leak location 
(1.3%). 

4.3 Multiple leaks analysis 

The simulated inlet and exit temperatures, 
pressures, and flow rates are generated for single, two, 
and three leak situations, with reference to the data 
generating procedure for multiple leaks illustrated in 
Section 3. The pressure and mass flow profiles are 
compared for a subset of cases prior to training the ANN 
model to make sure there are discernible differences 
between them. This stage is essential for the ANN model 
to effectively differentiate between the various 
scenarios based on the variances in the data that have 
been seen. 

In three-phase data, the ANN model with only two 
input parameters exhibited the highest ARE values, with 
1.2% for leak size and 4.8% for leak location. In summary, 
the results indicate that the model with six input 
parameters performs best for single-phase data, while 
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the model with four input parameters is optimal for two-
phase data. For three-phase data, both the four-
parameter and six-parameter models display competent 
performance in different aspects of leak detection and 
localization. 

Table 4. ANN accuracy in terms of the Absolute relative 
error (ARE, %) *. 

Fl
o

w
 

p
h

as
e

 

SIG FIG TIG 

LS LL LS LL LS LL 

Single 0.1 0.6 0.1 1.4 0.9 4.8 

Two 0.6 2.3 0.2 1.1 0.3 1.3 

Three 0.3 3.4 0.5 4.8 1.2 4.8 

*SIG, FIG, TIG= six, four, and two input group, respectively. LS 
= for leak size, LL = leak location. 

For instance, Fig. 11 shows the flow parameters’ 
profiles with three leaks at different locations and 
different sizes. This case is selected as example of that 
multiple leak case can yield input pressure and outlet 
flow rate similar to the values of single leak. To explain 
this, we can note that the inlet pressure in Fig. 11 is close 
to 109 bar with outlet flow close to 55 kg/s. These values 
close to those of single leak at 6500 m with size of 3.0 cm 
(110 bar, 53 kg/s). This may yield inaccurate prediction 
for the leak detection and localization if the ANN model 
is not supported with other inputs. Therefore, for 
multiple leak detection, it will be more effective to start 
leak detection with two ANN inputs (inlet pressure, and 
outlet mass flow rate). Then, to verify the results, re-
detect with four inputs and six inputs to the ANN models. 
This will enhance the accuracy of the ANN model as 
explained in the next subsections.   

 

Fig. 11. Pressure, temperature, gas velocity, density, and 
mass flow profiles with three leak locations. 

To begin predicting leak sizes and locations, it's 
essential to first determine the total number of leaks. To 
achieve this, a pattern recognition ANN model is 
employed, exhibiting a flawless 100% accuracy rate. 
Once the number of leaks is established, the feedforward 
ANN model is utilized to predict leak locations and sizes. 
Table 5 offers a comparative overview of the ANN 
model's performance in single, two, and three leak 
scenarios, providing insights into the optimal ANN 
configurations and Absolute Relative Error (ARE) values 
for leak size and location predictions. 

For the single leak scenario, the preferred ANN 
configuration is a single hidden layer comprising ten 
neurons, denoted as "10." The ARE values for leak size 
and location are 1.80% and 2.76%, respectively. It's 
worth noting that these values are notably higher than 
those reported in Table 4 for the single leak scenario 
(0.6% for leak size and 2.3% for leak location). The 
discrepancy can be attributed to differences in the 
number of data sets used for training and testing the 
ANN model. 

Table 5. Accuracy measures of the ANN models for single/ 
two/three leaks’ conditions *. 

# of leaks ANN 
config. 

ARE (leak 
size) 

ARE (leak 
location) 

Single “10” 1.80 2.76 

Two “15,2” 9.18 16.18 

Three “16,20” 8.58 10.59 

*ARE= 
1

𝑛
× ∑ (

|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
)𝑖=𝑛

𝑖=1  

In the two leaks scenario, the optimal ANN 
configuration is denoted as "15,25." However, the ARE 
values are higher compared to the single leak scenario, 
with a 9.18% average relative error for leak size and a 
16.18% average relative error for leak location. 

In the three leaks scenario, the optimal ANN 
configuration is labeled "16, 20." Again, the ARE values 
are higher than those in the single leak scenario, with an 
8.58% average relative error for leak size and a 10.59% 
average relative error for leak location. 

In summary, the analysis of ARE values reveals that 
the ANN model excels in the single leak scenario, 
displaying high accuracy in both leak size and location 
predictions. However, its performance is poor in 
scenarios with two or three leaks, as evidenced by the 
higher ARE values. This implies that accurately predicting 
both the size and location of multiple leaks presents 
challenges for the ANN model, resulting in increased 
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uncertainty and errors in such cases. Further 
investigation and assessment are needed to identify 
potential factors contributing to the performance 
decline in multiple leak scenarios and explore strategies 
to enhance the ANN model's accuracy in such situations. 

5. CONCLUSIONS 
This paper introduces new methodologies to 

develop efficient artificial neural network (ANN) models 
for leak detection and localization in offshore gas 
pipelines. Systematic procedures are developed to 
generate data under single/multiple leak conditions to 
train and test ANN-based leak detection and localization 
models. These data are generated based on real pipeline 
profile and cover single-, two-, and three phase flow 
conditions (using OLGA multiphase simulator).  

First, the pipeline's input and output pressure, 
temperature, and mass flow rates were used to train the 
ANN models. These six input variables are referred to as 
the SIG (six inputs group). The ANN's input count is then 
changed to four (FIG), and two (TIG) inputs. The findings 
demonstrate that the projected values of the leak size 
and leak position are significantly influenced by the 
number of ANN inputs (SIG, FIG, and TIG) as well as the 
phase flow conditions. Therefore, a multi-stage leak 
identification procedure starting with TIG and confirming 
it using FIG and SIG ANN models is suggested in order to 
obtain robust leak determination parameters and 
minimize noise signals. 

For multiple leak scenarios, data are generated 
based on two-phase flow conditions and single, two, and 
three leaks’ locations. The results show that the accuracy 
of the ANN models at multiple leak conditions is much 
lower than at single leak with an average error higher 
than 8%. Therefore, to improve the multiple leak 
detection accuracy, more data need to generated and 
further tests for these data with various machine 
learning techniques are required and recommended as a 
future work.   
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