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ABSTRACT 
High penetration of renewable energy presents 

great challenges in the operation of a distribution grid, 
and load peak shaving and power smoothing cannot be 
ignored. The application of multiple shared energy 
storage systems is a promising solution to this problem.  
Therefore, in order to analyze the capability of multiple 
shared energy storage systems to smooth the 
aggregators’ total load curve, this paper proposes a day-
ahead peak shaving model to optimize the coordinated 
operation strategy of energy storage and PV distributed 
generation systems. This model aims to minimize the 
residual load peak-to-valley difference, and 
comparative analyses are conducted. The results show 
that the proposed model can provide peak shaving 
effectively, and the application of multiple shared 
energy storage systems can enhance the stability of the 
combined net load. 

 
Keywords: Shared energy storage systems, optimal 
operation, peak shaving, load smoothing, linear 
programming 

1. INTRODUCTION 
With the rapid economic development and the 

accelerated urbanization pace in recent decades, energy 
consumption, especially residential energy demand, has 
grown very rapidly [1]. Moreover, in order to reduce 
carbon emissions and achieve sustainable development 
goals, efforts have been made to increase distributed 
renewable energy generation facilities in the power 
system [3]. However, due to the diversity of residential 
customers' electricity consumption patterns and the 
intermittent characteristics of renewable energy 
sources, the stability and coordinated operation of the 
power system are challenged [5]. In particular, the 
uncertainty of the peak-to-valley difference in the 
power system is increasingly prominent [6].  To solve 
this problem, the energy storage system is considered 
one of the most promising technologies owing to its 
superiority in increasing system flexibility and improving 
the reliability and economy of the grid [11]. 

Furthermore, it can be applied to peak and valley 
regulation and improve the absorption capacity of 
renewable energy, as it can store excess energy during 
valley hours and release it during peak hours [12]. 

However, as the high cost of energy storage 
equipment has inhibited many investors from investing, 
shared energy storage is gaining more interest due to its 
lower price of service. The shared energy storage (SES) 
system has become a hot issue discussed by many 
scholars in recent years, and many studies have 
investigated problems such as pricing and capacity 
planning for SES services [15].  As a result of the 
reformed operation of the electricity market 
environment, the model of multiple SES operators 
serving many customers at the same time is gaining 
attention, which is also referred to as a peer-to-peer 
trading market mechanism. This mechanism allows 
electricity consumers more freedom in the way they 
purchase electricity and also encourages healthy 
competition among SES operators [17]. The scholars in 
[17] compare different ownership structures of 
different battery storage systems in an energy-sharing 
network to analyze the economic efficiency of the 
stakeholders. The researchers analyze auction 
mechanisms and bidding strategies in a peer-to-peer 
solar market to investigate changes in the economic 
efficiency of the market [19]. 

From the above literature, it can be seen that most 
studies on the objective of customers’ participation in 
SES projects focus on economic benefits. Nevertheless, 
the above background analysis clarifies the fact that this 
model was originally born to alleviate the grid peak 
operation problem. For this reason, we introduce a 
fundamental question: how can the model of customer 
participation in the SES system bring benefits to the 
peak and valley operation of the grid? Although there is 
some literature on the internal operation and planning 
of shared energy storage and customers, few [20] have 
been conducted on the benefits of this model for the 
grid. For example, [20] integrates renewable energy 
with local electric utilities to derive integrated tariff and 
energy management strategies by coordinating 
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customer electricity supply and demand. The test 
results show the effectiveness of the scheme in limiting 
peak loads. However, this study does not focus on the 
role of energy storage sharing. [21] It aims to 
investigate an energy management approach applicable 
to residential communities including photovoltaic (PV) 
systems, shared energy storage systems, and electric 
vehicles, with the goal of reducing energy costs and 
peak demand. [22] established a peer-to-peer energy 
trading community where a third party manages and 
owns the shared energy storage system. It optimizes 
the capacity dispatch of the energy storage system by 
determining market prices, and the results validate the 
model in terms of its effectiveness in terms of economic 
benefits and the benefits of reducing the negative watts 
fed back to the grid. However, this research is primarily 
concerned with effectiveness in the economy and 
reducing peak demand without consideration of the 
overall goal of minimizing load fluctuation and ignores 
the importance of net load peak-to-valley differences 
for grid stability. 

In summary, to explore the role of multiple SES 
systems on the residential side in reducing load 
fluctuations and narrowing net load peak-to-valley 
differences of the grid, this paper develops the model of 
multiple SES operators serving multiple customer 
aggregators. First, the objective of this model is to 
minimize the total net load peak-to-valley difference to 
derive optimal strategies for shared energy storage 
systems and PV distributed generation systems. Second, 
the model is mathematically analyzed and transformed 
into linear programming (LP) by a linearization method. 
Finally, case studies with different weights verify the 
superiority of the proposed model in reducing the net 
load peak-to-valley differences of the grid. 

2. SYSTEM DESCRIPTION  

Fig. 1. shows the general architecture of the 
multiple SES system proposed in this paper, including 
the grid, multiple SES operators, and multiple customer 
aggregators. Next, the functions and objectives of each 
participant are described. 

1) Grid: We consider a main grid, where the grid 
acts as a supplier that needs to provide all the demand 
deficits generated by electricity consumers. For the grid, 
it is crucial to improve grid stability by encouraging the 
utilization of flexible power devices such as energy 
storage on the customer side to regulate the load and 
reduce demand fluctuations. 2) Aggregators: We 
consider multiple groups of aggregators, each of which 
manages a fraction of the scale of electricity customers. 

It is worth noting that the development of distributed 
generation has transformed the role of end-users from 
traditional consumers to prosumers with the ability to 
produce and consume energy [23]. Therefore, electricity 
customers under aggregator management in this paper 
are prosumers who hold PV distributed generation 
systems. Specifically, each aggregator can purchase 
electricity from the grid or discharge from shared 
storage systems, and can also charge the shared storage 
system to satisfy subsequent demand at the moment 
when PV generation is available. In this context, 
aggregators will flexibly apply SES systems and 
renewable energy generation equipment to respond to 
the call of the electricity market and reduce the peak-
to-valley difference in grid demand. 3) SES operators: 
We consider multiple SES operators who maintain and 
manage SES systems of different scales. At varying 
moments, they allocate optimal power to different 
aggregators with the goal of smoothing the net load of 
the grid. Therefore, each SES may allocate different 
amounts of power to different aggregators, which also 
provides an optimization space for aggregators ' 
charging choices. 

 
Fig. 1. Diagram of proposed multiple SES systems serving 

multiple aggregators model 

3. MODEL AND METHODS 

This study focuses on the grid peak shaving 
problems in the residential-side context. Nowadays, the 
SES system is widely considered a flexible tool to reduce 
the peak-to-valley differential. Moreover, the model of 
multiple SES operators serving multiple customer 
aggregators can achieve complementary supply with 
demand among customers and coordinated operation 
of multiple energy storage operators. Therefore, this 
section presents the mathematical formulation of the 
proposed model involving multiple SES operators and 
multiple aggregators. 

3.1 Operation constraints 
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First, when establishing the relevant problem, the 
following constraints should be considered: 
3.1.1 Power balance constraints  

(1) ∑𝑀
𝑚=1 𝑃𝑏𝑛,𝑚,𝑡 = 𝑃𝑛,𝑡

𝐶   

(2) 𝐺𝑚,𝑡 = 𝐷𝑚,𝑡
𝑅 − ∑𝑁

𝑛=1 𝑃𝑛,𝑚,𝑡 + ∑𝑁
𝑛=1 𝑃𝑏𝑛,𝑚,𝑡 − 𝑃𝑟𝑚,𝑡                   

(3) 𝑠𝑜𝑐𝑛,𝑡 = 𝑠𝑜𝑐𝑛,𝑡−1 + 𝑃𝑛,𝑡
𝐶 × 𝜂𝑐 − 𝑃𝑛,𝑡

𝐷  /𝜂𝑑    

(4) ∑𝑀
𝑚=1 𝑃𝑛,𝑚,𝑡 = 𝑃𝑛,𝑡

𝐷                                     

where  𝑛 ∈ [1, 𝑁] n represents the set of shared storage 
operators, 𝑚 ∈ [1, 𝑀]  represents the set of 
aggregators, and 𝑡 ∈ [1, 𝑇] represents the set of time. 
𝑃𝑏𝑛,𝑚,𝑡/𝑃𝑛,𝑚,𝑡  represents the power of the SES system 

charged/discharged by the 𝑚th aggregator to the 𝑛th at 

time slot 𝑡, and 𝑃𝑛,𝑡
𝐶  /𝑃𝑛,𝑡

𝐷  represents the total power 

𝑛th shared storage charged/discharged.  Eq. (1) and (4) 
represent the charge/discharge balance of each shared 
energy storage. 𝐺𝑚,𝑡 is the power purchased from the 

grid by each aggregator, and 𝑃𝑟𝑚,𝑡  is the power 

produced by the prosumers under the management of  
𝑚th aggregator at time 𝑡. Eq. (2) shows the calculation 
of the net load on the grid on the basis of each 
aggregator's participation in SES systems. 𝑠𝑜𝑐𝑛,𝑡 

represents the state of charge (SOC) of the 𝑛th SES at 

time 𝑡, and 𝜂𝑐/𝜂𝑑 denotes the charging and discharging 
efficiency, Eq. (3) shows the calculation of the SOC of 
SES systems. 
3.1.2 Variable Limits 

(5) ∑𝑀
𝑚=1 𝑃𝑏𝑛,𝑚,𝑡/𝜂𝑑 ≤ 𝑃𝑛

𝑆𝐸𝑆                 

(6) ∑𝑀
𝑛=1 𝑃𝑛,𝑚,𝑡 × 𝜂𝑐 ≤ 𝑃𝑛

𝑆𝐸𝑆                  

(7) ∑𝑁
𝑛=1 𝑃𝑏𝑛,𝑚,𝑡 ≤ 𝑃𝑟𝑚,𝑡                            

(8) 𝑃𝑏𝑛,𝑚,𝑡 ≥ 0                               
(9) 0 ≤ 𝑃𝑛,𝑚,𝑡 ≤ 𝑃𝑛,𝑡                          

(10) ∑𝑁
𝑛=1 𝑃𝑛,𝑚,𝑡 ≤ 𝐷𝑚,𝑡                      

(11) soc 𝑛
min ≤ soc 𝑛,𝑡 ≤ soc 𝑛

max                 

where Eqs. (5) and (6) represent SES charging and 
discharging power limits. Eqs. (7) and (8) denote 
aggregator charging capacity limits, where Eqs. (7) 
restricts that each group of aggregators should charge 
within the generation capacity. Eqs. (9) and (10) show 
the power constraints assigned to aggregators by SES 
operators, where each aggregator is assigned no more 
than the total allocation, and each aggregator is 
assigned no more than its demand. Eqs. (11) represents 
the SOC  constraint of the SES system. 

3.2 Optimal model based on linearization method  

3.2.1 The proposed model 
According to the analysis in [22], the purpose of 

peak regulation for the grid is to obtain a smooth 
residual compliance sequence. And the residual load 
can be obtained from the original load and the power 
allocated to it during the participation in the 

optimization process as well as from its own power 
production. From the idea of [26], we take the peak-to-
valley difference as the objective function as an 
alternative to smooth net load, and the smaller the 
peak-to-valley difference the better the objective value. 
That is to say, SES operators should try to allocate more 
power at the peak and the aggregator should generate 
more power at the peak to reduce the peak-to-valley 
difference and achieve the purpose of smoothing the 
net load of the grid, which is expressed below: 
(12) 𝑓𝑚 = min {max 1≤𝑡≤𝑇{𝐺𝑚⋅𝑡} − min 1≤𝑡≤𝑇{𝐺𝑚,𝑡}}  
where 𝑓𝑚 denotes the peak-to-valley difference in 
residual load for 𝑚th aggregator. However, due to the 
difficulty of solving the above objective function, we 
introduce two auxiliary variables as follow: 
(13) 𝑃‾𝑚 = max 

1≤𝑡≤𝑇
{𝐺𝑚,𝑡}                        

(14) 𝑃
‾
𝑚 = min 

1≤𝑡≤𝑇
{𝐺𝑚,𝑡}             

where the following constraints are also introduced to 
ensure the validity of the auxiliary variables. 
(15) 0 ≤ 𝑃‾𝑚 ≤ 𝐷‾𝑚                              
(16) 0 ≤ 𝑃

‾
𝑚 ≤ 𝐷‾𝑚                                

(17) 𝑃
‾
𝑚 ≤ 𝐺𝑚,𝑡 ≤ 𝑃‾𝑚                             

where Eqs. (15) and (16) limit the maximum limit of the 
two auxiliary variables, and 𝐷‾𝑚  represents the 
maximum value of the initial load of the 𝑚 th 
aggregator. 
3.2.2 Standardization of model 
   However, it can be seen that the objective function is 
still a multi-objective optimization problem. 
(18) 𝑓𝑚 = 𝑃‾𝑚 − 𝑃

‾
𝑚                                               

We introduce weight values 𝑤𝑚 to transform it into a 
single-objective problem to truly give the optimized net 
load range, and to simplify the calculation, it is 
normalized. 
(19) 𝑓𝑚

1 = 𝑓𝑚/𝐷‾𝑚                                

(20) 𝑓 = min{∑ {𝑤𝑚 × 𝑓𝑚
1}

𝑚

𝑛=1
}                 

Based on the above analysis, the objective function 
is transformed into a linear programming model, which 
is represented by Eq. (20). In addition, the constraints 
consist of Eqs. (1)-(11) and (15)-(17), and the constraints 
are all linear functions. In this paper, we apply CPLEX 
12.8 to solve the LP problem in this paper. 

4. RESULTS AND CONCLUSION 

4.1  Application data and background 

The customer electricity consumption data in this 
section are obtained from [27] based on reports in [28] 
and [29]. And the generation data are derived from [30] 
simulations and presented in Fig. 2. In addition, Table 1 
details the additional data required. We analyze the 
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effect of different weighting factors on the optimization 
results to verify the validity of the model. To ensure 
fairness, we also set up a comparative analysis with the 
same weighting factors to limit the capacity used by 
aggregators proportionally and compare it with the 
initial data. 

 

Fig. 2. Initial load and maximize power generation 
 

Table 1. Main technological parameters 
Variable Description Value 

𝜼𝑪/𝜼𝒅 Charging and discharging 
efficiency of SES systems 

95% 

𝐬𝐨𝐜 𝒏
𝐦𝐢𝐧/

𝐬𝐨𝐜 𝒏
𝐦𝐚𝐱/wh 

The upper/lower bound of 
SOC for SES systems 

[5000,7500,12500]/ 
[95000,142500,237500] 

𝑷𝒏
𝑺𝑬𝑺/w Power capacity of SES 

system 
[50000,75000,125000] 

𝑫‾ 𝒎/w The maximum value of the 
initial load 

[35242.4,48544.9,46843.61] 

𝒘𝒎 Weighting factor Case 1: [0.3,0.38,0.32] 

Case 2: [0.287,0.451,0.262] 

4.2 Case study 1: Weighting factors based on demand 

In the first case study, we take the average demand 
data to set the target weighting factors for aggregators 
proportionally. Moreover, the calculation results of 
each aggregator's proportional restriction on the use of 
SES system capacity were compared under the same 
weighting factor. Due to the high efficiency of the 
calculation (which only takes about 1 second), this 
paper focuses on the discussion and analysis of the 
calculation results. Table 2 gives the peak, valley, peak-
valley difference, and standard deviation of the net load 
of the grid calculated by our method and the capacity 
limitation method, respectively. The detailed hourly net 
loads and SES charge states of different grids are shown 
in Fig. 3. It is worth mentioning that in Fig. 3 (d), we 

indicate the optimal results below the axes for 
comparison purposes. 

 
 

Fig. 3. Comparison of hourly net load and SOC for each 
aggregator, Case 1 

 
Table 2. The results of peak, valley, peak-valley 

difference, and standard deviation of the net load, Case 1. 

Aggregator 
Item Peak Valley P-V 

difference 
Standard 
deviation 

Agg1 

Limited 23964 19642 13322 0.37802 

Optimi
zed 

15817 10642 5175.8 0.14686 

Agg2 
Limited 44569 15422 29148 0.60043 

Optimi
zed 

44569 15422 29148 0.60043 

Agg3 
Limited 36487 8865.9 27621 0.58963 

Optimi
zed 

23823 8865.9 14957 0.3193 

𝑓𝑙𝑖𝑚𝑖𝑡 = 0.503  𝑓𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 = 0.374  

From the data in Table 2, we can see that our 
proposed optimal method demonstrates the superiority 
of peak shaving compared to the capacity limitation 
method. For example, for Aggregator 1, the peak-to-
valley difference is reduced by 23.1%, and for 
Aggregator 3 the peak-to-valley difference is reduced by 
27.0%. In addition, the peaks are significantly reduced, 
which demonstrates the effectiveness of this method. 
As shown in the results in Table 2 and Fig. 3, both 
methods smoothed the net load throughout the 
sequence when compared with the initial data. 
However, our proposed method is more effective in 
reducing the peak-to-valley difference than the capacity 
limitation method. For example, at 8-12 hours, the 
Aggregator 1 peak is reduced by an average of 3504 
watts. On the other hand, it can be seen from the SOC 
diagram that the average utilization of the SES system 
increases. In addition, the mismatch between 
Aggregator 2 generation hours and peak demand hours 
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leads to insufficient power allocation during high-
demand hours. Moreover, the low demand leads to less 
capacity allocated during peak generation hours, which 
inhibits its desire to generate electricity and thus 
weakens its ability to cut peaks and fill valleys. 
Therefore, it is concluded from the above results that 
our method and model are feasible and effective. 

4.3 Case study 2: Weighting factors based on power 
generation 

In the second case study, the weighting factor is 
related to the proportion of PV power generation, and 
the same comparison is set to limit the capacity. To 
reduce space, the calculated peak, valley, peak-to-
valley, and standard deviation of the net load of the grid 
are not shown here. The final results yield 𝑓𝑙𝑖𝑚𝑖𝑡 =
0.520, 𝑓𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 = 0.397  and he detailed hourly net 

load and shared storage charge states for different grids 
are shown in Figure 4. 

 
Fig. 4. Comparison of hourly net load and SOC for each 

aggregator, Case 2 

Compared to the Case 1, the residual loads 
generated by the aggregators are both slightly changed 
due to the change in weighting factors. The change is 
most pronounced for Aggregator 2, which is due to the 
fact that Aggregator 2 has a larger average generation 
share and the weighting factor assigned according to 
the average generation has the greatest impact on 
Aggregator 2. Similarly, both this method and the 
capacity-limiting method produce better ground curves 
than the initial data through the rational deployment 
and operation of SES systems and PV distributed 
generation systems. From the SES system SOC diagram, 
we can see that the average utilization of the SES 
system decreases compared to the above case. 

In summary, the above two cases show that the 
coordinated operation and operation of shared energy 
storage systems and renewable energy generation can 
flexibly relieve the pressure of peak-shaving operation 
and smooth the net load of the grid. Solving these 
problems should also take into account the 
characteristics of electricity consumption and the 
generation behavior of different customers. 

5. CONCLUSIONS 

In recent decades, the expanding demand and the 
development of renewable energy sources have posed 
challenges to the operation stability of the power grid, 
especially for peak shaving operations. Coordinating 
multiple SES systems with residential aggregators can 
enhance the efficiency in smoothing the total load 
curve. To investigate the effect of multiple SES systems 
in reducing the combined net load fluctuations, this 
paper presents a model to coordinate the operation of 
multiple SES operators serving aggregators for 
minimizing the peak-to-valley differences of the net 
load. The day-ahead peak shaving model is proposed by 
considering operation strategies of multiple SES and PV 
distributed generation systems. Several case studies are 
constructed by varying the weight coefficients of the 
objective function, in which comparative analyses with 
different energy storage capacity limits are also 
established. The results demonstrate that: 1) the 
proposed model can smooth the total load of all 
aggregators effectively by taking advantage of the 
coordinated operation of  SES systems and PV  
distributed generation systems; 2) the weight 
coefficients have different influences on aggregators 
with different characteristics in terms of final load, SES 
operating strategies, and PV generation decisions; 3) 
both methods of the proposed model are superior to 
the initial case, moreover, the proposed approach 
without limiting the capacity performs better in terms 
of reducing the load peak-to-valley differences,  
improving shared storage utilization, and increasing PV 
generation capacity.  

For practical application, the model can be used in 
the coordinated operation of multiple SES systems in 
the day-ahead peak shaving plan and the appropriate 
weights should be selected. Further research can 

investigate effective interactions between grid and SES 
systems to enable efficient coordination of energy 
storage facilities with the grid. 
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