A low energy consumption ammonia based CO₂ capture process with bipolar membrane electrodialysis

Zhengyuan Song¹, Guogang Sun ^{1*}

1 Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, Beijing 102249, China

(*Corresponding Author: ggsunbj@163.com)

ABSTRACT

Post combustion capture using chemical absorption is one of the most mature technologies, which can effectively reduce CO₂ emissions from plants. But it usually comes with the cost of high energy consumption. Aiming to reduce the regeneration energy consumption of post combustion CO₂ capture technology, a novel ammonia based CO₂ capture process with bipolar membrane electrodialysis(BMED) and CO₂ regeneration reactor is designed. In the CO₂ regeneration reactor, the CO₂ loaded by rich solvent is completely released and collected due to the reactions between the rich solvent and strong acid. After that, energy consumption of the BMED unit is effectively reduced because there is no bubble formation in the cell during the electrodialysis process. The performance of conventional amine based process and the novel process is evaluated by simulation and calculation. Result shows that the CO₂ regeneration energy consumption of the novel process is as low as 1.80MJ/kgCO₂, which is much lower than that of the conventional $process(3.91MJ/kgCO_2)$. Given the volatilization of the NH₃, the treatments of escaped NH₃ in the novel process is discussed. When the value-added products is considered, sent the escaped NH₃ washing solution to the desulfurization part as absorbent may be a better choice than recovering NH₃ with heating. With the development of the membrane technology, the energy consumption of the novel process will be further reduced. If combined with renewable energy technology, it is expected to be a new CO₂ capture technology.

Keywords: CO₂ capture, aqueous ammonia, bipolar membrane, energy consumption

NONMENCLATURE

Abbreviations	
MEA	Monoethanolamine
BMED	Bipolar membrane electrodialysis

1. INTRODUCTION

The rising emission of greenhouse gases, mainly CO₂, has caused climate change and environmental problems. CCUS(Carbon capture, utilization and storage) technologies have been receiving increasing attention. Post combustion CO₂ captured by chemical absorption is considered as the most practical and effective capture technology at present. Monoethanolamine(MEA), K₂CO₃ and aqueous ammonia are the most commonly CO₂ absorbents. Compared to conventional amine based CO₂ capture solvent, aqueous ammonia possesses many advantages, such as low material cost, resistance to thermal degradation and oxidation degradation, and most importantly lower regeneration energy (about 3MJ/kgCO₂)[1].

The main drawback of the ammonia based CO_2 capture process is the high volatility of the NH₃, which leads to the ammonia concentration in the purified flue gas is much higher than the emission standard. Extra equipment and energy consumption are required to recover the escaped NH₃, making ammonia based process has no obvious advantages in energy consumption compared with amine based process (about 4MJ/kgCO₂). Therefore, for the ammonia based CO_2 capture process, two aspects should be considered to reduce energy consumption: regeneration part and escaped NH₃ recovery. For the regeneration part, in addition to the process optimization of conventional

[#] This is a paper for International CCUS Conference 2023 (ICCUSC2023), April 14-15, 2023, Beijing, China.

thermal regeneration, it is also very important to find new schemes with energy saving potential. Bipolar membrane electrodialysis(BMED) is recently considered as an alternative scheme for absorbent regeneration after CO₂ capture[2]. Previous study has shown that direct electrodialysis NH₄HCO₃ solution has low CO₂ recovery and very high energy consumption[3]. Valluri S et al[4] believed that the bubbles existence during electrodialysis in cells is the reason of high energy consumption and designed a process which eliminated the bubble. Results shows that reagent regeneration energy of the new scheme was reduced as low as 1.18MJ/kgCO₂, which is very competitive compared to thermal regeneration. But there are few reports on the energy saving of BMED in ammonia based process. For the escaped NH₃ recovery, water is usually used to capture NH₃ and there are two treatments for washing solution. One is recovering escaped NH₃ by heating the solution[5,6], the other is sending solution to SO₂ scrubbing unit and producing ammonium sulfate fertilizer co-product[7]. However, the compassion of the two treatments are rarely reported, It is necessary to evaluate the two methods so that the escaped NH₃ can be treated more economically.

This paper aims to design a novel ammonia based CO_2 capture process with low energy consumption. The BMED unit and CO_2 regeneration reactor are set for the regeneration part of the process. Simulation and calculation are carried out to compare the conventional amine based process and the novel process. In addition, considering the NH₃ volatilization, treatments of the escaped NH₃ in the novel process are also discussed and compared.

2. PROCESS DESCRIPTION AND MODEL

The flue gas data are shown in the Tbl. 1 , which is derived from the desulfurized flue gas of a catalytic unit in Hebei, China. The SO_2 content of the flue gas is less than $50mg/m^3$ so that SO_2 component is ignored in the simulation.

Tbl. 1 Flow rate and composition of
desulfurized wet flue gas

Flow rate (kg·h ⁻¹)	Temperature(K)	Mole fraction of components(%)			
109430	323.15	N ₂	H ₂ O	CO ₂	0 ₂
		75.10	9.00	12.46	3.44

2.1 Process description

Fig. 1 shows the flowsheet of conventional amine based process. The flue gas was introduced into

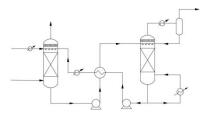


Fig. 1. Flowsheet of conventional amine based process

absorber and most of the CO_2 component was captured. The rich solvent was introduced into stripper by passing the heat exchanger to be regenerated to lean solvent and CO_2 product. The lean solvent was then circulated back to the absorber.

Flowsheet of the novel process is shown in Fig. 2. The BMED unit was set as the regeneration scheme of ammonia based process. Aiming to reduce the regeneration energy consumption, a CO₂ regeneration reactor was set between the absorber and BMED unit of the novel process. The process was initialized by introducing desulphurized flue gas into CO₂ absorber, the flue gas made contact with aqueous ammonia and CO₂ was captured. The vent flue gas was then washed with fresh water to recover the escaped ammonia and discharged into the atmosphere after it was heated. The rich solvent from CO₂ absorber was introduced into the CO₂ regeneration reactor and reacted with strong acid. Through the reactions, CO₂ would be regenerated effectively and rapidly regenerated from the rich solvent, and corresponding strong acid ammonium salt would be generated. The ammonium salt solution discharged from CO₂ regeneration reactor was then sent to BMED unit, in which salt solution would be regenerated into strong acid and aqueous ammonia under the action of electric field. The produced strong acid was recirculated back to CO₂ regeneration reactor and aqueous ammonia was recirculated back to CO₂

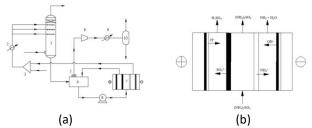


Fig. 2. Flowsheet of the novel process and schematic diagram of BMED unit with three compartments (a)flowsheet of the novel process (b) BMED unit (1)CO₂ absorber, (2,9)cooler, (3)mixer, (5)demister, (6)pump, (7)BMED unit, (8)compressor, (10)separator,

absorber.

2.2 Model validation

Simulation and calculation were performed to evaluate the feasibility of the novel process and its energy saving potential was compared with amine based process with Aspen Plus. Equilibrium model was used in simulation. For the amine based process, Electrolyte NRTL method was used to calculate the liquid phase properties and the Redlich-Kwong equation was used to calculate the fugacity coefficient of vapor phase. The N₂, O₂ and CO₂ were set as Henry's law components. As shown in Fig. 3, the methods are validated against VLE(vapor and liquid equilibrium) data from literatures[8-10]. For the novel process, Pitzer method and Redlich-Kwong equation were used to calculate the VLE data. The N₂, O₂, CO₂ and NH₃ were set as Henry's law components. The reliability of the methods in predicting the thermodynamic properties of the NH₃-H₂O-CO₂ system has been verified in the

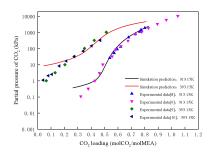


Fig. 3. Model validation of thermodynamic methods for MEA process

literature[11].

3. RESULTS AND DISCUSSION

The amine based process was taken as the basic case, while the CO_2 removal efficiency and regeneration energy consumption were taken as evaluation criteria for process. The original operation condition parameters of the basic case were shown in Tbl. 2. In order to inhibit NH3 volatilization, the concentration and temperature of aqueous ammonia are lower.

Tbl. 2 Original operation	parameters of cases
---------------------------	---------------------

Parameter	Unit		The novel
Farameter	Unit	MEA process	process
Concentration of solvent	wt%	25	6
Flow rate of solvent	kg/h	300000	300000
Temperature of solvent	К	313.15	288.15

3.1 Amine based process

3.1.1 MEA concentration

The influence of MEA concentration on CO_2 removal efficiency and regeneration energy consumption is shown in Fig. 4. With the MEA concentration increasing, the CO_2 removal efficiency increases and the energy consumption decreases, which means better system performance. But the oxidation, degradation and corrosion of amine solvent are much more severe with the increase of concentration. Therefore, the concentration of MEA solvent is limited under 30wt.%.

3.1.2 Flow rate of the solvent

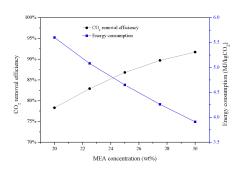


Fig. 4. CO₂ removal efficiency and regeneration energy as a function of MEA concentrarion

The influence of solvent flow rate on CO₂ removal efficiency and regeneration energy consumption is shown in Fig. 5. With the solvent flow rate increasing, the CO₂ removal efficiency increases, and the regeneration energy consumption first decreases and then increases. The minimum regeneration energy consumption of 3.91MJ/kgCO₂ and CO₂ removal efficiency of 91.7% appears when the solvent flow rate is 3.0×10⁵kg/h. The solvent flow rate not only affects the performance of the process but also affects the operation of pump and geometric size of the absorption and regeneration equipment[1]. Therefore, the solvent flow rate corresponding to the lower CO₂ regeneration energy consumption is considered as optimized condition and used in following sections.

3.2 Regeneration energy consumption of the novel

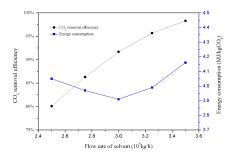


Fig. 5. CO₂ removal efficiency and regeneration energy as a function of solvent flow rate

Due to the lack of BMED unit module in Aspen Plus, the regeneration energy consumption of the novel process is calculated by combining literatures data with electrodialysis process simulation. The energy consumption of ammonium salts is shown in Tbl. 3. As can be seen from the Tbl., the experimental equipment size, membrane material and operating condition of different ammonium salt electrodialysis research are different. Therefore, the minimum energy consumption data reported in the literatures are used to calculate the BMED unit in novel process. The original unit of energy consumption in Tbl. 3 can be converted to MJ/kgCO₂ by material conservation of strong acid and CO₂ in the CO₂ regeneration reactor. The calculation results show that the energy consumption of direct electrodialysis NH₄HCO₃ is the highest, followed by NH₄NO₃, NH₄Cl, and $(NH_4)_2SO_4$ is the lowest. Therefore, H_2SO_4 is set as the strong acid which reacts with rich solvent to regenerate CO₂ in the novel process.

Tbl. 3. Electrodialysis energy consumption of

~~~~	onum	COL
anni	onium	วลาเ

Salt solution type	BMED configuration	Operation condition	Energy consumption	Ref
NH ₄ HCO ₃	Three compartment	Current density:100A/m ² NH ₄ HCO ₃ concentration:0.75mol/L	2.21 kW·h/kgCO ₂	[3]
NH₄CI	Three compartment	Current density:80mA/cm ² NH₄Cl concentration:1mol/L	1.19kW·h/kgHCl	[12]
(NH4)2SO4	Three compartment	Current density:15.8mA/cm ² (NH ₄ ) ₂ SO ₄ concentration:0.758mol/L	0.208kW∙h/kg(NH₄)₂SO₄	[13]
NH4NO3	Three compartment	Current density:50mA/cm ² NH4NO ₃ concentration:2.02mol/L	1kW·h/kgHNO₃	[14]

The rich solvent contains (NH₄)₂CO₃, NH₄HCO₃, residual ammonia and intermediate of the absorption recation(mainly NH₂COONH₄, which will react with H₂O and form NH₄HCO₃ and NH₃). These reaction products associated with ammonia need to be fully reacted with H₂SO₄ in the regeneration reactor to ensure the complete recovery of CO₂. Therefore, the energy consumption of the BMED unit in the novel process can be calculated by the ratio of the final constant substance between  $SO_4^{2-}$  and  $NH_4^+$ , combined with Tbl. 3. Flow rate of NH4⁺-related are provided by process simulation. Fig. 6 shows the CO₂ removal efficiency and escaped NH₃ as a function of 6wt% ammonia solvent. Considering the influence of aqueous ammonia flow rate on pump work, equipment size and ammonia escape amount, the flow rate of solvent in novel process is selected at 2.55×10⁵kg/h and the flow rate of

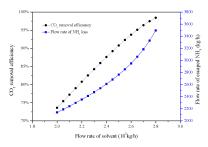



Fig. 6. CO₂ removal efficiency and NH₃ escaping as a function of 6wt% ammonia solvent

simulation and shown in Tbl. 4.

Tbl. 4. Flow rate of ammonia-associated component in
rich solvent

Component name	Unit	Value
NH ₃	kmol∙h ⁻¹	104.7
$NH_4^+$	kmol∙h ⁻¹	456.9
NH ₂ COO ⁻	kmol∙h ⁻¹	126.4

The comparison of the MEA process and the novel process is shown in Tbl. 5. Compared with MEA process, the  $CO_2$  removal efficiency of the novel process is similar, but the  $CO_2$  regeneration energy consumption is significantly reduced, only 46% of the MEA process, which indicated that the novel process shows competitiveness and development potential in energy saving.

Tbl. 5. Comparison of novel process and MEA process

Process	CO₂ removal efficiency	Regeneration energy consumption(MJ/kgCO ₂ )	
MEA	91.7%	3.91	
process	51.770	5.51	
Novel	92.3%	1.80	
process	92.370	1.00	

3.3 Economic comparison of escaped ammonia treatment

As mentioned above, there are usually two ways to treat the NH₃ washing solution: recovering NH₃ by heating the solution or using it as desulphurization absorbent. In this section, the former one is set to be scheme No.1 and the latter one is set to be scheme No.2. Both schemes will be evaluated and compared

For the scheme No.1, water at 283.15K is used to wash the flue gas and the  $NH_3$  content in the flue gas after washing is controlled at less than 50ppm. Heat exchanger is set between washing column and  $NH_3$ 

regenerator to reduce energy consumption. Simulation results show that  $1.15 \times 10^5$ kg/h water is required to absorb the escaped NH₃ and additional energy consumption is 1.52MJ/kgCO₂. The washing solution cannot be directly returned to CO₂ absorber because the concentration is too low to meet the requirement.

For the scheme No.2, the novel process requires continuous supply of aqueous ammonia to keep the  $CO_2$ removal efficiency, which brings additional costs. However, the desulfurization product  $(NH_4)_2SO_4$  is valuable, which can make up part of cost caused by aqueous supplement. Tbl. 6 shows the recent prices of related chemical products, combined with simulation results, the economic performance of the two treatments can be evaluated and compared.

Chemical substance	Product status	Cost (¥/tons of product)
H₂O	0.4MPa saturated	180-220
1120	steam	100 220
NH ₃ ·H ₂ O	20wt% aqueous	800-1200
N113-112O	ammonia	800-1200
(NH ₄ ) ₂ SO ₄	Crystal	1500

The calculation results are converted to the cost of capturing one ton of CO₂. The cost of recovering NH₃ is 143.2¥/tCO₂, the cost of aqueous ammonia supplement is 752.9¥/tCO₂ and the income of (NH₄)₂SO₄ product is 828.6¥/tCO₂, which means recovering NH₃ shows much economy than that of aqueous ammonia supplement. However, the (NH₄)₂SO₄ product can effectively reduce the gap between the two ways. If 73.7 percent of NH₃ can be converted to (NH₄)₂SO₄, the scheme No.2 may be a better choice.

## 4. CONCLUSION

In order to reduce the regeneration energy consumption of CO₂ capture process , a novel ammoniabase process with bipolar membrane electrodialysis was designed. The simulation and calculation results showed that the regeneration energy of the novel process can be as low as 1.80MJ/kgCO₂, which is much lower than that of amine-base process. The economy of escaped NH₃ treatment ways was also discussed. Given the value of ammonia desulfurization products, it may be a better choice to send washing solution for escaped NH₃ to desulfurization part and continuously supply aqueous ammonia than to regenerate NH₃ with heating.

### **DECLARATION OF INTEREST STATEMENT**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All authors read and approved the final manuscript.

## REFERENCE

[1] Jingwen Y, Shujuan W, Hai Y, et al. Rated-based modeling of  $CO_2$  regeneration process in ammonia based capture process. Int. J. Greenhouse Gas Control 2014;28:203-215.

[2] R Sharifian , R M Wagterveld , I A Digdaya , et al. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 2021;14:781-814.

[3] Tingting H. Research on carbon capture and desorption technologies based on bipolar membrane electrodialysis. North China Electric Power University 2016 (in Chinese).

[4] S Valluri, S K Kawatra. Reduced reagent regeneration energy for CO₂ capture with bipolar membrane electrodialysis. Fuel Process. Technol. 2021;213:106691.

[5] Lombardo G, Agarwal R , Askander J. Chilled Ammonia Process at Technology Center Mongstad – First Results. Energy Procedia 2014; 51:31-39.

[6] Hai Y, Morgan S, Allport A, et al. Results from trialling aqueous  $NH_3$  based post-combustion capture in a pilot plant at Munmorah power station: Absorption. Chem. Eng. Res. Des. 2011;89:1204-1215.

[7] Mclarnon C R , Duncan J L . Testing of ammonia based  $CO_2$  Capture with Multi-Pollutant Control Technology. Energy Procedia 2009;1:1027-1034.

[8] Keh P S, Hui L M. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J. Chem. Eng. Data 1992;37:96-100.

[9] Lee J I, Otto F D, Mather A E . Equilibrium between carbon dioxide and aqueous monoethanolamine solutions. J. Appl. Chem. Biotech. 2010; 26: 541-549.

[10] Han L, Yann L M, Jianhui L, et al. CO2 solubility measurement and thermodynamic modeling for 1-methylpiperazine/water/CO₂. Fluid Phase Equilib. 2015;394: 118-128

[11] Jilvero H, Normann F, Andersson K, et al. Thermal integration and modelling of the chilled ammonia process. Energy Procedia 2011;4: 1713-1720.

[12] Yan L, Haiyang Y, Baojun Y, et al. Bipolar membrane electrodialysis for the recycling of ammonium chloride wastewater: Membrane selection and process optimization. Chem. Eng. Res. Des. 2018; 138: 105-115. [13] Ruiming L, Zeqiang Z, Hanquan Z, et al. Influence factors of decomposing ammonium sulfate by bipolar membrane electrodialysis. Industrial Minerals &Processing 2015;44: 24-27 (in Chinese).

[14] M A B Ali, M Rakib, S Laborie, et al. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate. J. Membr. Sci. 2004; 244: 89-96.