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ABSTRACT
Carbon dioxide injection can help solve two issues

in shale reservoir production. Firstly, it can reduce
carbon emissions while, secondly, improving
unconventional reservoir recovery. There are many
controlling factors for CO2 injection to enhance oil
recovery in shale reservoirs, and the effect of field
implementation varies greatly. The key to popularizing
this extraction technology is determining the main
controlling factors of CO2 displacement efficiency. Using
CO2 shale displacement laboratory results from Tovar et
al. (2021), the grey correlation analysis method was
used to determine the main controlling factors affecting
core oil displacement efficiency, such as shale reservoir
physical parameters (rock compressibility, porosity,
median pore size, matrix permeability, TOC and oil
saturation) and engineering parameters (soaking time
and injection pressure). The genetic algorithm (GA) was
introduced to optimize the backpropagation (BP) neural
network to construct the prediction model of the CO2

indoor displacement experiments in shale core. The
results showed that the injection pressure of
engineering parameters, the CO2 soaking time of gas
injection parameters, and the porosity of shale physical
parameters were the main controlling factors affecting
the oil displacement efficiency. The prediction accuracy
of the genetic neural network model improved, and the
coefficient of determination (R2) reached 0.983.
Compared to the conventional neural network model,
the mean absolute error (MAE) was reduced by 30%,
the root mean square error (RMSE) was reduced by
46%, and the R2 increased by 11%. Optimizing the
learning and training of the prediction model

significantly reduces the cost of laboratory
experiments. The deep learning model completed by
training can intuitively show the influence degree of
input parameters on output parameters, providing a
theoretical basis for studying CO2 displacement
mechanism in shale reservoirs.

Keywords: shale oil; CO2 fracturing; genetic algorithm;
BP neural network; oil displacement efficiency;
prediction model

1. INTRODUCTION
In recent years, with the development of shale oil

and gas exploration, the world has been committed to
realizing the scale and efficient development of shale
oil and gas reservoirs to alleviate the increasingly
severe energy security situation (Liu et al., 2022). Shale
oil and gas are stored in micro and nanopore media,
and large-scale volume fracturing using conventional
water-based fracturing fluids faces a series of
challenges (Wu et al., 2022). CO2 fracturing-production
technology is an effective method to improve shale
reservoirs' recovery rate. Compared with water-based
fracturing fluid, the advantages of using CO2 as a
fracturing agent are lower fracturing pressure and
stronger fracturing ability. It can effectively improve the
fracture permeability of shale reservoirs and fully utilize
the physical and chemical properties of CO2 (pressure
increase, viscosity reduction, dissolution, diffusion, and
replacement, etc.) to improve the recovery of shale
reservoirs (Zhang et al., 2017; Zhang et al., 2020). In
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addition, using CO2 in the extraction of shale oil
reservoirs is conducive to carbon capture, utilization,
and storage (CCUS), which reduces environmental
pollution, helps reduce carbon emissions on a large
scale, and mitigates the greenhouse effect. This
technology will be critical in long-term emission
reduction and deep decarbonization (Sher et al., 2020;
Qureshi et al., 2021; Yuan et al., 2022).

Gupta et al. classified more than one thousand
rock samples from four regions in North America,
including Eagle Ford, to study the heterogeneity of
shale reservoirs. The recovery enhancement
mechanism and results differed between rock types and
fields in the same field (Gupta et al., 2017; Gupta et al.,
2018). Tovar et al. conducted experiments on injecting
CO2 in shale reservoirs to enhance recovery and studied
the effects of injection pressure, minimum miscible
pressure (MMP), and soaking time on recovery. The
experimental results showed that CO2 could
significantly improve the recovery of shale reservoirs
(Tovar et al., 2021). Yu et al. conducted a study on CO2

injection in tight oil reservoirs to improve recovery,
comparing the effect of CO2 injection on
water-alternating gas (WAG) and active carbonated
water alternating gas (ACWAG) technologies. The
results showed that ACWAG achieved the highest
recovery rate with CO2 injection (Yu et al., 2021). Wu et
al. studied the mechanism of CO2 fracturing throughput
in low-permeability reservoirs. The results showed that
CO2 had a better effect on crude oil in the solubilization
and viscosity reduction, and the degree of CO2 fracture
throughput recovery could reach more than 60% (Wu
et al., 2022). Zhao et al. conducted a study on the
efficiency of CO2 soaking replacement and replacement
of oil and gas in tight reservoirs. Results showed that
the replacement efficiency of CO2 in reservoirs could be
effectively improved by increasing the soaking time or
improving the reservoir properties (Zhao et al., 2021).

CO2 fracturing-production technology is still mainly
used in indoor experiments and small-scale field trials,
such as the Jilin oilfield, Yanchang oilfield, and Jimsar
shale oilfield in China (Zhang et al., 2014; Wang et al.,
2022; Tang et al., 2022). Due to the small scale of
indoor experiments, high experimental cost, generally
low CO2 replacement oil displacement efficiency, and
time-consuming and labor-intensive field tests, it is

difficult to fully understand and employ the
experimental results widely in field tests.

As global oil and gas exploration and development
become more complex, the demand for technology
tends to be refined and enhanced. With its powerful
arithmetic and great potential, artificial intelligence has
achieved good application results in the oil and gas field
(Min et al., 2022). Jiang et al. studied the development
trends of intelligent fracturing technologies. They
pointed out that using artificial intelligence for deep
mining small data samples and establishing an
integrated fracturing intelligent decision-making
platform is conducive to promoting a complete and
unified intelligent fracturing technology system (Jiang
et al., 2022). Yang et al. studied optimizing reasonable
soaking time in shale reservoirs based on machine
learning and established a prediction model. The results
showed that the reasonable soaking time calculated by
the new model has high accuracy, and the prediction
accuracy can reach up to 94% (Yang et al., 2022).
Negash et al. conducted an artificial neural
network-based production forecasting for underwater
hydrocarbon reservoir injection. The results showed
that the proposed fluid production prediction model
had a coefficient of determination over 0.9, and the
simulation results matched the actual data to a high
degree with low computational cost (Negash et al.,
2020).

Traditional numerical simulation has limitations
such as long modeling time, high computational cost,
inaccurate parameter description, and single evaluation
effect. Traditional machine learning algorithms are
inadequate in terms of computational accuracy, data
expansion, and adaptability. As a vital network model
for deep learning, BP neural network algorithm has a
high degree of nonlinear mapping capability, which can
avoid the drawbacks existing in traditional methods.

Based on the CO2 shale core replacement
experiments of Tovar et al. (2021), this paper
introduces a BP neural network optimized by a genetic
algorithm to construct a prediction model for indoor
replacement experiments to study the effects of
numerous parameters involved in CO2 replacement
experiments on replacement efficiency. The goal is to
create an understanding of indoor experiments that can
be employed in field tests.
2. DATA SOURCE ANDMECHANISM ANALYSIS
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This paper used BP neural network to analyze the
factors affecting the displacement efficiency of shale
reservoirs. We introduced a genetic algorithm to
optimize the prediction model based on the
experimental results of CO2 throughput displacement
shale reservoirs conducted by Tovar et al. The
experimental results of small samples could replicate
and reproduce themselves and established the
prediction model of CO2 indoor displacement
experiments in shale cores based on genetic algorithm
optimized BP neural network to form better regularity
understanding.

Due to technical limitations, the current recovery
rate of North American shale reservoirs is generally
between 2% and 16% (Delaihdem, 2013). Certain
achievements have been made in shale reservoirs in the
Wolfcamp Formation in North America using CO2

fracturing-production technology, providing a new

technical idea for exploiting shale reservoirs (Loucks et
al., 2009). Accordingly, Tovar et al. (2021) conducted an
indoor CO2 injection displacement experiments in shale
reservoirs in the Wolfcamp Formation, which are rich in
organic matter, to explore the differences in production
mechanisms of traditional oil reservoirs. The material
used in the experiments is a Wolfcamp shale reservoir.
The core was 2.5cm in diameter and ~ 5cm in length.
Thirteen groups of CO2 injection displacement
experiments of shale cores were carried out to study
the influences of physical parameters, injection
methods, injection pressure, and soaking time of
different shale reservoirs on the recovery efficiency of
shale reservoirs. Three groups of experiments had no
test results due to testing errors, and the test data of
the remaining 10 groups of displacement experiments
are shown in Table 1.

Table 1 The parameters of displacement experiment by CO2 injected in shale core.

Serial
num
ber

Porosity
/%

Compresss
ibility/(1·M
Pa-1 ·10 -3)

Oil
saturatio

n/%

MMP/
MPa

Crude
oil

density
/(g·cm

-3)

TOC/wt
%

Median
pore

size/nm

Matrix
permea
bility/nd

Soakin
g

time/h

Injection
pressure
/MPa

Oil
displac
ement
efficien
cy/%

1# 10.3 1.18 85.91 25.56 0.88 4.4 7 1370 22 24.14 40
2# 8.22 1.43 30.02 25.56 0.88 2.34 6 530 10 17.24 17.8
3# 5.94 0.93 67.45 25.56 0.88 1.87 5 430 0 17.24 9.7
4# 5.94 0.93 67.45 25.56 0.88 1.87 5 430 0 24.14 14.1

5# 6.44 0.65 50.11 13.28 0.83 2.91 5 370 21 8.28 9.5
6# 10.12 1.27 15.23 13.28 0.83 1.55 5 325 0 14.48 7.4
7# 8.1 0.77 32.22 13.28 0.83 4.08 4 170 21 14.48 14.5
8# 8.65 3.1 65.13 13.28 0.83 3.97 6 390 21 21.38 26.2
9# 7.35 1.33 31.83 13.28 0.83 2.97 5 390 0 8.28 1.7
10# 7.17 1.55 62.7 13.28 0.83 2.18 5 440 0 21.38 14.7

Note: The simulated reservoir temperature was 73.9°C.

The experiments were sorted according to the
MMP of injected CO2 and crude oil. The first four sets of
experiments corresponded to the MMP of 25.56 MPa
for CO2 and the first fluid sample (crude oil with a
density of 0.88 g/cm3), and the last six sets of
experiments corresponded to the MMP of 13.28 MPa
for CO2 and the second fluid sample (crude oil with a
density of 0.83 g/cm3). The experimental results
focused on the engineering parameters of gas injection
and discussed in detail the influence of gas injection
methods, injection pressure, soaking time, and other

factors on oil displacement efficiency, which showed
that:

(1) Effect of gas injection methods. The five groups
of core displacement experiments corresponding to
zero soaking time (experimental serial numbers 3#, 4#,
6#, 9#, and 10#) represented continuous CO2 injection
experiments. The remaining five groups were CO2

injection throughput experiments represented by
different soaking times (reflecting on-site soaking time).
The experimental results showed that the oil
displacement efficiency of cores with continuous gas

https://fanyi.so.com/?src=onebox
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injection ranged from 1.7% to 14.7%; the oil
displacement efficiency of cores with CO2 injection
throughput ranged from 9.5% to 40%. Overall, it
showed that the replacement process with crude oil in
the CO2 injection throughput of shale cores is the main
reason for the higher oil displacement efficiency.

(2) Effect of injection pressure. Continuous gas
injection (zero soaking time) was used for the first fluid
sample. Experiments #3 and #4 increased injection
pressure from 17.24 MPa to 24.14 MPa, a pressure
increase of 6.9 MPa. The oil displacement efficiency
increased from 9.7% to 14.1%, an increase of 4.4
percentage points.

Experiments 6# and 9# with continuous gas
injection for the second fluid sample increased injection
pressure from 8.28 MPa to 14.48 MPa. The oil
displacement efficiency increased by 5.7 percentage
points during the continuous gas injection period.
Experiments #5, #7, and #8 using gas injection and
throughput with 21h soaking time showed that when
the injection pressure increased from 8.28 MPa to
14.48 MPa (a pressure increase of 6.2 MPa), the oil
displacement efficiency increased by 5 percentage
points. When the injection pressure increased from
14.48 MPa to 21.38 MPa (a pressure increase of 6.9
MPa), the oil displacement efficiency increased by 11.7
percentage points. The experimental results showed
that the injection pressure significantly impacts the oil
displacement efficiency. When the pressure is higher
than the MMP, the oil displacement efficiency of oil and
CO2 in a miscible state is better.

(3) Effect of soaking time. For the first fluid sample,
experiments 2# and 3# showed that increasing the
soaking time from 0 to 10h at a constant pressure of
17.24 MPa increased the oil displacement efficiency by
8.1 percentage points. Experiments 1# and 4# showed
that increasing the soaking time from 0 to 22h at a
pressure of 24.14 MPa increased the oil displacement
efficiency by 26 percentage points.

For the second fluid sample, experiments 5#-10#
showed that the oil displacement efficiency of soaking
throughput increased significantly over that of

continuous gas injection at three pressure levels of 8.28
MPa, 14.48 MPa, and 21.38 MPa, regardless of whether
the injection pressure was greater or less than the
MMP (13.28 MPa). When the injection pressure was
less than the MMP, for example, at an injection
pressure of 8.28 MPa, the oil displacement efficiency
increased nearly five times. When the injection
pressure was greater than the MMP (at an injection
pressure of 14.48 MPa or 21.38 MPa), the oil
displacement efficiency increased by a factor of one.

Due to the limitation of experimental conditions,
indoor experiments can only reflect the oil
displacement mechanism under the influence of the
experimental factors involved. It is difficult to form a
comprehensive understanding of the interrelationship
between the experimental factors with a small number
of experimental results. They simply cannot be
extended to field applications. Additional work is still
needed to analyze the relationship between various
influencing factors and oil displacement efficiency.
3. DATA PROCESSING AND RESEARCHMETHODS
3.1 Data source and processing

The experimental data in Table 1 were obtained
from the CO2 shale core replacement experimental
results of Tovar et al. (2021), which contain reservoir
geological parameters, crude oil fluid parameters, and
injection engineering parameters. To improve the
convergence speed of the neural network model and
reduce the training error in training, the initial data
were normalized before training to normalize the test
data to the range of 0~1. The normalization equation is:

minmax

min

xx
xxX i

i 


 (1)

Where xi, xi are normalized data values, original data
values; and xmax, xmin are the maximum and minimum
values in the original data.

After integrating the original experimental data
and excluding irrelevant data and groups, the
cause-free data of the 10 experimental datasets used in
this test were obtained, as shown in Table 2.

Table 2 Normalized data.

Serial
num
ber

Porosity/
%

Compressibilit
y/(1·MPa-1·10

-3)

Oil
saturation/

%

TOC/wt
%

Median
pore

size/nm

Matrix
permeabi
lity/nd

Soaking
time/h

Injection
pressure/

MPa

Oil
displace
ment

efficiency
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/%

1 1.000 0.217 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 0.523 0.319 0.209 0.277 0.667 0.300 0.455 0.000 0.420
3 0.000 0.115 0.739 0.112 0.333 0.217 0.000 0.000 0.209
4 0.000 0.115 0.739 0.112 0.333 0.217 0.000 1.000 0.324

5 0.115 0.000 0.493 0.477 0.333 0.167 0.955 0.000 0.204
6 0.959 0.250 0.000 0.000 0.333 0.129 0.000 0.473 0.149
7 0.495 0.049 0.240 0.888 0.000 0.000 0.955 0.473 0.334
8 0.622 1.000 0.706 0.849 0.667 0.183 0.955 1.000 0.640
9 0.323 0.277 0.235 0.498 0.333 0.183 0.000 0.000 0.000
10 0.282 0.367 0.672 0.221 0.333 0.225 0.000 1.000 0.339

3.2 Establishment of BP neural network model
BP neural network is one of the most widely used

neural network models (Zhu et al., 2006). It is a
multilayer feedforward neural network trained
according to an error back propagation algorithm. The
topology of its model consists of an input layer, hidden
layers, and an output layer.

Because only 2 groups of fluid samples were
selected in this study, corresponding to only 2 groups of
crude oil density and MMP, the number of fluid
samples would interfere with the ranking of factors. We
analyzed the other eight influencing factors using the
gray correlation method (Liu et al., 2013). Among them,
rock compressibility, porosity, TOC, and oil saturation
related to the physical properties of rock reservoirs
reflect the original reserves and decaying recovery
capacity in matrix reservoirs. The median pore size
reflects the ability of CO2 to enter the reservoir. The
influence of matrix permeability is not significant

because the reservoir is put into production by
fracturing. The soaking time reflects the degree of CO2

replacement with crude oil in the reservoir, and the
injection pressure reflects the degree of CO2 mixing
phase with crude oil in the reservoir.

The results of the gray correlation analysis are
shown in Table 3. In order of correlation, the injection
pressure and soaking time of engineering parameters
were the main control factors affecting the oil
displacement efficiency. The geological parameters
with the greatest influence to least are porosity,
median pore size, TOC, compressibility, oil saturation,
and matrix permeability. Finally, the first seven indexes
with a correlation higher than 0.95 were selected as the
input layer parameters of the BP neural network, and
the oil displacement efficiency of indoor experiments
was selected as the output layer parameters to
establish the prediction model of shale core CO2 indoor
displacement experiments based on BP neural network.

Table 3 The analysis results of correlation degree between various influencing factors and oil displacement efficiency.

Evaluation items Relevance Ranking

Injection pressure/MPa 0.991 1
Soaking time/h 0.986 2
Porosity/% 0.986 3

Median pore size/nm 0.984 4
TOC/wt% 0.981 5

Compressibility/(1·MPa-1 ·10-3 ) 0.979 6
Oil saturation/% 0.95 7

Matrix permeability/nd 0.615 8

The parameters through the input layer were
divided into each hidden layer, and each hidden layer
node then performed operations such as encoding of
weights and thresholds and error evaluation on each
input data. In turn, the output result was obtained: the
indoor experimental oil displacement efficiency

obtained from this training and prediction. The
single-layer structure was chosen for the hidden layer
of the BP neural network of this model, and the number
of nodes in the hidden layer was obtained by the
empirical equation (2), and the error was smaller when
the number of nodes in the hidden layer was 10.
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qnmp  (2)

Where p is the number of nodes in the hidden layers; n
is the number of nodes in the input layer; m is the
number of nodes in the output layer; and q is an integer
between 1 and 10.
3.3 Establishment of BP neural network model
optimized by genetic algorithm

The traditional BP neural network algorithm has
slow convergence problems, poor searching ability, and
easily falls into local minima, which are disadvantages in
training (Liu et al., 2017). The genetic algorithm (GA)
has good optimization ability in the initial weights and
thresholds of the BP neural network, and the optimized
model quickly convergences and has a low
computational cost (Yu, 2015). Considering the small
sample of the data set of this research object, we
introduced the genetic algorithm to optimize and
improve the BP neural network, constructed the
prediction model of shale core CO2 indoor displacement

experiment based on GA-BP neural network, and then
laid the material foundation for indoor experiments to
guide field applications.

The structure of the model mainly includes two
parts: BP neural network and genetic algorithm
optimization (Huang et al., 2009). First, the BP neural
network part determines the parameters and states of
the input, hidden and output layers, establishes the
topology of the network model, and then initializes the
weights and thresholds. The genetic algorithm
optimization encodes the weights and thresholds from
the BP neural network, performs genetic selection,
crossover, and variation operations to obtain the fitness
results, and feeds the optimal weights and thresholds
back to the neural network. Finally, the BP neural
network is continuously trained and evaluated until it
meets the target requirements for prediction and
output. The GA-BP neural network algorithm flow of
the prediction model is shown in Fig. 1.

Fig. 1. GA-BP neural network algorithm flow of prediction model.

In this paper, Matlab software was used for
programming. Ten sets of data set samples were
divided into training and testing sets (the first 6 sets
were training samples, and the last 4 sets were testing
samples) to train and test the neural network model. In
training, the maximum number of iterations for the BP
neural network training was set to 1000, the error
threshold was 1×10-6, and the learning rate was 0.01.
The number of genetic generations for genetic
algorithm optimization was set to 50, the population

size was 10, the crossover probability was 0.7, and the
variation probability was 0.1.
3.4 Evaluation indicators

To comprehensively evaluate the accuracy of the
model, the mean absolute error (MAE), root mean
square error (RMSE), and coefficient of determination
(R2) were calculated to evaluate the accuracy of the
experimental prediction model of shale core
replacement. The smaller the value of MAE and RMSE,
the smaller the model error. The closer the value of the
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coefficient of determination R2 is to 1, the better the
model fit. The specific formulas for the evaluation
indicators are as follows.





n

i
ii yy

n
MAE

1

1
(3)

 



n

i
ii yy

n
RMSE

1

21
(4)

 

 










 n

i
i

n

i
ii

yy

yy
R

1

2

1

2

2 1 (5)

Where iy and iy are the actual and predicted

values of oil displacement efficiency, % ; y is the

arithmetic mean of the actual values of oil
displacement efficiency; and n is the number of
samples.
4. RESULTS AND ANALYSIS
4.1 BP neural network model testing

After data processing, parameter fitting, and error
evaluation, the BP neural network prediction model
obtained from the training set was used for the
prediction of the last 4 sets. The fitting results of oil
displacement efficiency are shown in Fig. 2. The
comparison shows that the predicted trend of shale
core displacement is in good agreement with the actual
value. The prediction accuracy of the BP neural network
model is shown in Table 4. The mean absolute error of
the prediction set is 1.286, the root mean square error
is 1.757, and the R2 is 0.899.

(a) (b)
Fig. 2. Comparison of fitting results of shale core displacement experiments based on BP neural network: (a) Comparison

between the fitted value and the actual value, and (b) Comparison between the predicted value
and the actual value.

4.2 Model testing and analysis after optimization by
genetic algorithm

After the genetic algorithm optimization of the
above BP neural network model, the GA-BP neural
network prediction model obtained from the training
was used again to predict the last four groups of
samples. The fitness curve of the optimized prediction
model is shown in Fig. 3. It can be seen that the
individual adaptation index gradually decreases, and
the adaptation ability gradually increases after multiple
optimization and calculation of the GA-BP neural
network model. When the number of iterations reaches
29, the individual adaptation level gradually stabilizes.

The comparison of the fitting results of oil
displacement efficiency obtained after optimization is
shown in Fig. 4. The predicted values of the BP neural
network prediction model optimized by the genetic
algorithm fit better with the actual values. The
prediction accuracy of the GA-BP neural network model
is shown in Table 4. The results show that the accuracy
of the predicted values of the GA-BP neural network
model improved, with the mean absolute error of
0.898, root mean square error of 0.946, and R2 reaching
0.983. After optimization by the genetic algorithm, the
mean absolute error is reduced by 30%, the root mean
square error is reduced by 46%, and R2 increased by
11%.
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Table 4 Comparison of oil displacement efficiency prediction effect and error analysis based on BP neural network and GA-BP
neural network.

Model type Predicted group
number

Actual value/% Predicted value/% MAE RMSE R2

BP model

1 14.50 15.82

1.286 1.757 0.889
2 26.20 23.28

3 1.70 5.86

4 14.70 14.26

GA-BP model

1 14.50 14.64

0.898 0.946 0.983
2 26.20 26.49

3 1.70 2.81

4 14.70 15.85

Fig. 3. The fitness curve of GA-BP neural network prediction model.

(a) (b)
Fig. 4. Comparison of fitting results of shale core displacement experiments based on GA-BP neural network: (a) Comparison

between the fitted value and the actual value, and (b) Comparison between the predicted value and the actual value.

4.3 Application of the method
The prediction model based on GA-BP neural

network constructed for shale core CO2 indoor
replacement experiments can be used to examine the
effects of various influencing factors on the oil

displacement efficiency under different experimental
conditions. The experimental fluid sample density was
0.83g/cm3, the experimental temperature was 73.9°C,
the corresponding MMP was 13.28MPa, and multiple
sets of prediction experiments were designed. The
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injection pressure was 7MPa, 15MPa, and 20MPa. The
soaking time was 0, 10h, and 25h. The other

experimental conditions were set within a reasonable
range, and the specific test data are shown in Table 5.

Table 5 The test data of prediction experiment.

Serial
numbe

r

Porosity/% Compressibility/(1·M
Pa-1·10 -3)

Oil
saturation/%

TOC/wt% Median pore
size/nm

Soaking
time/h

Injection
pressure/MPa

1 7.65 0.98 67.45 3.18 4 25 15
2 5.86 1.43 34.45 1.78 5 0 15
3 7.76 1.67 55.67 2.87 5 10 7
4 6.96 1.24 68.9 1.56 4 0 7
5 10.2 1.52 89.65 2.41 6 25 20
6 8.46 1.14 77.4 3.8 5 10 15
7 8.28 1.2 35.78 2.65 6 25 7
8 7.66 2.3 62.8 2.21 5 10 20
9 9.65 1.16 40.69 2.32 5 0 20

The GA-BP neural network indoor displacement
experimental prediction model was subjected to data
processing, parameter fitting, and error evaluation. The
results of this prediction experiment are obtained as
shown in Fig. 5. The mean absolute error, root mean
square error, and R2 of the test set highlight the high
accuracy of the model. The predicted oil displacement
efficiency results are within a reasonable range. The
analysis of the prediction results shows that the

experimental pattern of the effect of gas injection
methods, injection pressure, and soaking time on oil
displacement efficiency is in remarkable agreement
with the indoor experiments of core displacement of
Tovar et al. (2021). Overall, the prediction results and
accuracy of the GA-BP neural network prediction model
is high, and the model is suitable for experimental
modeling.

(a) (b)
Fig. 5. The prediction experiments results based on GA-BP neural network: (a) Comparison between the fitted value and the

actual value, and (b) The predicted value of oil displacement efficiency.

5. CONCLUSIONS
(1) The influencing factors of oil displacement

efficiency were ranked using gray correlation analysis
based on the shale core CO2 displacement experiments
and parameters. Numerous constraining factors
influence oil recovery in the integrated development
process of CO2 soaking-production in shale reservoirs
and the significant variation in the field implementation

effect. The findings demonstrated that the main control
factors affecting the oil displacement efficiency are the
injection pressure, CO2 soaking time, and reservoir
porosity.

(2) This paper established a genetic
algorithm-optimized BP neural network-based
prediction model for CO2 indoor displacement
experiments in shale cores. Compared with the
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traditional BP neural network prediction model, the
fitting degree and prediction accuracy of the GA-BP
neural network prediction model were enhanced. The
mean absolute error was reduced by 30%, the root
mean square error was reduced by 46%, and the R2

increased by 11%. This provides a theoretical basis for
the indoor experimental study of the CO2 oil
displacement mechanisms.

(3) The model optimized by genetic algorithm
overcomes slow convergence problems, poor searching
ability, and the tendency to fall into local minima
compared to traditional neural networks. In practical
production, the model can play an important role in
prediction and evaluation by learning various types of
dynamic and static influencing factors, overcoming the
above issues with previous models, while reducing
experimental costs.
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