
Predicting CO2 storage pressure and saturation based on deep learning surrogate
model

Jianchun Xu1,2*, Qirun Fu 1,2

1 Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education,
Qingdao 266580, P. R. China

2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
(*Corresponding Author: 20170048@upc.edu.cn)

ABSTRACT
CO2 sequestration which is one of the important

means to avoid global warming today provides an
economically viable technical means to reduce
greenhouse gas emissions. To maximize the
sequestration efficiency while evaluating the effect of
formation uncertainty, a numerical simulator of
multiphase flow is required to simulate high-
dimensional nonlinear multiphase flow within a non-
homogeneous porous medium. Due to the inherent
inhomogeneity of the formation of porous media and
the nonlinear coupling of multiple complex physical
processes, a significant amount of repetitive numerical
simulation processes impose considerable
computational costs and require prolonged
computational time to obtain simulation results.

In this paper, we propose an efficient and fast flow
surrogate modeling process for deep learning,
proposing that the extended hyperparameter
optimization process will incorporate the neural
network architecture and the loss function as relevant
parameters into the optimization process.
Subsequently, we conducted experiments based on the
workflow proposed in this study for the case of CO2

storage in a homogeneous deep saltwater layer and
achieved accurate predictions at 120-time steps with
mean MSE of 5E-5 and 2E-5 for gas saturation and
pressure, and MSSIMs of 0.9989 and 0.9998,
respectively, under different production parameters
and well placement settings.
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NOMENCLATURE

Abbreviations

MSE mean square error
SSIM Structural Similarity Index
MSSIM mean Structural Similarity Index

CCUS Carbon dioxide capture, utilization
and storage

CNN Convolutional Neural Networks
2D Two-dimensional

TPE Tree-structured Parzen Estimator
algorithm

RMSE root mean square error
CMG Computer Modeling Group
BHP bottom hole pressure
ADAM adaptive moment estimation method

Symbols

C mass fraction of components
ρ density
v flow Rate
S fluid phase saturation
μ viscosity
φ rock porosity
q mass flow rate
P pressure
Z depth of reservoir
K absolute permeability
λ fluidity
g gravitational constant
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y output features of the simulator
x input features of the simulator
y� the output of the surrogate model
�� the input of the surrogate model

θ internal parameters of neural
architecture

Well well placement settings
t feature map of time step
F output feature map
W weights
b bias
p pixel
N total number of pixels
μ average value
σ variance/covariance
c small constants
M number of local images
u MSSIM weighting factor

Superscripts

m mth time step
° convolution operation
Subscript
g gas phase
w aqueous phase
i component
l fluid phase
bh bottom hole
inj injection well
k kth layer
p pixel within the image signal
L local image
y feature Map

1. INTRODUCTION
Carbon sequestration, as one of the effective means

to reduce carbon emissions, requires the guidance of a
large number of numerical simulation processes. Due to
the multi-scale inhomogeneity of porous media and
complex coupled physical processes, the control
equations describing multiphase fluid flow in porous
media are highly nonlinear, which brings huge
computational costs and running time.

Compared to complex numerical simulation models
with high computational costs, surrogate models can
significantly reduce computing time without sacrificing
accuracy or detail[1,2]. Compared with surrogate
models based on low-dimensional features, image-
based surrogate models retain more original variables
and are widely used for the prediction of fluid flow in

porous media[3–6]. However, redesigning the neural
architecture and loss function to build the surrogate
model is quite time-consuming.

We propose a novel surrogate model workflow that
enables fast surrogate model construction by extending
hyperparameter optimization. Then, we validate the
performance of this workflow with the example of CO2

sequestration in the saltwater layer.

2. METHODOLOGY

2.1 Formation flow control equation

In this work, we consider CO2 injection into a 2D
saltwater layer. The formation fluid phases are aqueous
and gas phases, and the fluid components include water
and CO2. where the water component is present only in
the aqueous phase. The CO2 is mainly present in the gas
phase, and part of the CO2 is dissolved in the aqueous
equivalent. Based on the law of mass conservation, the
continuity equation of component i within a
stratigraphic multiphase flow system can be described
by the following equation:

   g wv vig g iw w i ig g g iw w wC C q C S C S
t

            
(1)

Further considering the effect of gravity and
capillary pressure, the equation of motion of fluid
seepage can be obtained by combining Eq. (1) and
Darcy's law:

   l l l l lil i il lK C P Z q Cg S
t

    
            

(2)

Note that the sum of the molar fractions of the
components of the fluid phase is equal to 1, i.e.

1ilC  . And the phase pressure is correlated

Fig. 1. 2D feature maps converted from the original input
space.
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according to the capillary pressure, i.e. cgw g wP P P  .

2.2 Surrogate models based on deep learning

The deep learning-based surrogate model is driven
by simulated flow data to obtain mapping relationships
between high-dimensional data, which in turn leads to a
prediction of multiphase fluid flow states within non-
homogeneous reservoirs. In the numerical simulation of
the subsurface flow problem, the numerical simulator
maps high-dimensional inputs to high-dimensional
outputs by numerical computational methods. The
relationship between the input and output of a single
simulation can be considered as an approximate
function of:

( )y S x (3)
The numerical simulation process maps multiple

high-dimensional inputs to single (or multiple) high-
dimensional outputs with the help of a numerical
simulator. The surrogate model learns the mapping
relationships from the original data space and thus
makes predictions about the output state variables.
After approximating the mapping relationships between
inputs and outputs, the substitution process of the
surrogate model is approximated as：

ˆˆ ˆ( ; )y y S x   (4)
Therefore, the objective of this work is to

determine the neural architecture and loss function of
the surrogate model based on the dataset in order to
form a surrogate model for predicting the spatial and
temporal evolution of the stratigraphic flow state
variables. Considering the stratigraphic and production
features that have a significant influence on the
formation state variables during the numerical
simulation, we determined the input features of the
surrogate model from within the original input space.
First, porosity, permeability, well placement, BHP of
production well, and injection rate of injection wells are
used as input features. Since the actual CO2

sequestration involves continuous work over long
periods, we discretize the input features into sequential
time steps and incorporate them with the
corresponding time steps accordingly. Further using
formation pressure and saturation as output features,
for the mth time step, Eq. (4) can be converted to:

bh inj
ˆˆ ( , , , , , ; )m m m m my y S K Well p q t   (5)

The main task of the surrogate model is to predict
the output state variables (e.g., pressure and
saturation) at each time step based on the input
characteristics of the original input space. Fig. 2

Fig. 2. Architecture of the U-Net for this study. The number of filters is labeled above the symmetric decoder and encoder blocks.
There are two U-Net architectures (U-Net 1 and U-Net 2) included in this study, and the dotted lines refer to the additional

blocks included in the deeper U-Net.
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illustrates treating both the input and output of the 2D
reservoir model as 2D images. Accordingly, the task of
this study is transformed into an image-to-image
regression task, i.e., mapping the input feature maps to
the output feature maps with the help of a neural
architecture targeting image processing.

2.3 Variable U-Net architecture

The high-dimensional input features of the
numerical simulation process (including permeability,
porosity, etc.) have complex multi-scale spatial
correlations, while these high-dimensional
nonlinearities determine the spatiotemporal evolution
of the output state map. For the complex
spatiotemporal information contained in image signals
(or image-like signals), CNNs designed to process image
signals can capture them efficiently through filters
inside the network architecture. CNNs usually include
recursively connected convolutional layers, pooling
layers, and fully connected layers. Among them, the
lower-level convolutional layers will focus more on local
features, while the higher-level convolutional layers
focus on global information[7]. The sequentially
connected layered structure forms a generic CNN
architecture, where the relationship between adjacent
layers can be characterized by the following function:

1( )k kkk
oF W F b   (6)

To efficiently capture the spatial features inside the
image signal and the complex nonlinear mapping
relationships between the feature images, we chose the
U-Net[8] architecture with a symmetric encoder-
decoder structure in the CNN architecture. The
width[9,10] and depth[11–13] of a neural network can
significantly affect its performance. The width of a CNN
is usually characterized by the number of filters inside
the convolutional layers, while the number of layers
inside the architecture determines the depth of the
CNN. Moreover, redesigning the depth and width of the
neural architecture requires a large number of manual

error-setting sessions.
To simplify the surrogate modeling process, the

variable U-Net as shown in Fig. 1 is designed in this
study. The dashed convolutional blocks in Figure 1 are
the additional architecture of U-Net 2 compared to U-
Net 1. The symmetric contracting and expansive paths
that U-Net has to enable it to capture the high-
dimensional nonlinear relationships between complex
image signals more efficiently after discarding the fully
connected layer.

Fig. 3(a) shows the composition of the convolutional
block within the architecture, where repeating
convolutional layers, a batch normalization layer, and a
nonlinear activation (ReLU) layer are sequentially
connected to form the basic convolutional block. The
convolutional block Conv-block 1, which is directly
connected to the input features, contains n filters. The
input feature map passes through several successive
convolution blocks in the encoder path in sequence,
with the number of channels incrementing from n to 4n
(8n), and then connects to the decoder path via the
bridge block. Fig. 3(b) shows the upsampling operation
on the U-Net decoder path, where the batch
normalization and nonlinear activation functions are
sequentially connected after the upper convolutional
layer. The output feature map of the bridge block is
upsampled and concatenated with the output of the
convolution block of the corresponding layer of the
encoder path. The feature channels are decremented
from 8n (16n) at the bridge block to n via the decoder
path and then mapped to the specified output channel
nout by a 1×1 convolution operation and a nonlinear
activation function.

U-Net 1, U-Net 2, and the initial number of
convolutional block filters n are included as relevant
hyperparameters in the hyperparameter optimization
process of the surrogate model. Accordingly, the
architectural design aspects of the surrogate model are
simplified and further incorporated into the
hyperparameter optimization process.

2.4 Variable loss function

For the image-to-image regression task, the
performance of the neural architecture is mainly
characterized by the fidelity between the original image
signal and the predicted image signal. This study
characterizes the performance by comparing the
simulation features with the output features of the
surrogate model. MSE is widely used as a measure of
signal fidelity because it is simple to calculate and has a
clear physical meaning[14]. The MSE gives the degree of

Fig. 3. Composition of the convolutional blocks inside the U-
Net architecture.
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fidelity between signals by averaging the square of the
difference between the intensity of the predicted image
pixels and the labelled image pixels. For both the output
feature maps of the simulator and the surrogate model,
the computation of MSE can be characterized by the
following equation:

 2
1

1ˆ ˆ( , )
N

p p
p

MSE y y y y
N 

  (7)

The formation flow state variables predicted by the
surrogate model have complex spatial structure
information, especially in the pressure and saturated
plume leading edge and in the region close to the well.
However, the spatial correlation between pixels within
the image signal is ignored when using MSE alone as a
fidelity measure. To more accurately measure the
fidelity of the surrogate model, we introduced SSIM[15]
with reference to previous studies[5,16,17]. The SSIM
proposed by Wang et al.[15,18] forms a local SSIM by
comparing local image blocks at the same location of
two image signals. The local SSIM metric measures the
similarity of brightness, contrast, and structure of the
local images. For a particular two local image blocks, the
SSIM is calculated as shown below:

  
  2 2

ˆ ˆ1 2

2 2 2 2
ˆ1 2ˆ

2 2
ˆ( , ) L L L L

L LL L

y y y y
L L

y yy y

c c
SSIM y y

c c

  

   

 


   
(8)

Based on a fixed-size sliding window, the SSIM score
of each local part of the image is obtained by moving
the window pixel by pixel. For the overall fidelity
measure of the complete image signal, we use the
MSSIM metric to evaluate the overall image quality, it
can be calculated from the following equation:

1

1ˆ ˆ( , ) ( , )
M

L L
j

MSSIM y y SSIM y y
M 

  (9)

We apply MSE and MSSIM to the loss function to
measure the performance of the surrogate model in
two directions: pixel-level intensity error and the degree
of spatial structural distortion. In order to balance the
contributions of MSE and MSSIM in a particular
stratigraphic flow problem, we introduce the MSSIM
weighting factor u. The detailed loss function is
calculated as shown below:

ˆ ˆ ˆ( , ) ( , ) ( , )y y MSE y y u MSSIM y y   (10)
The weighting factor u is used as the relevant

hyperparameter in the hyperparameter optimization
process to obtain the best value based on the simulated
flow data set.

2.5 Extended hyperparameter optimization

To avoid redesigning neural architectures and loss
functions, we designed variable neural architectures
and loss functions to support extended hyperparameter
optimization. When the weighing factor u takes
different values, the performance of the surrogate
model cannot be accurately measured by directly
comparing the value of loss functions. To objectively
measure the performance of surrogate models
composed of different neural architectures and loss
functions, we define a joint performance metric based
on RMSE and MSSIM, which is calculated as shown
below:

 
1

2

1

1ˆ ˆ ˆ( , ) (1 ( , ))
N

p p
p

score y y y y MSSIM y y
N





 
     
 

 (11)

MSSIM takes values from 0 to 1, 1 when identical,
and 0 when completely irrelevant. For the pre-
processed feature maps (data between 0 and 1), the
maximum value of RMSE is 1 and the minimum value is
0. Accordingly, the joint performance metric has a
minimum of 0.5 and a maximum tends to infinity. Based
on the joint performance metrics, we evaluate the
performance of different surrogate models.

In this work, we implemented a neural architecture
based on Pytorch[19] and chose the ADAM[20] as the
optimizer. The extended hyperparameter optimization
includes learning rate, batch size, neural architecture
(U-Net 1 or U-Net 2), the number of initial convolutional
layer filters n, and weighing factor u. Based on the
hyperparameter optimization framework OPTUNA[21],
we use the TPE algorithm[22] for hyperparameter
optimization with the objective of maximizing the joint
performance metrics. The TPE algorithm is a powerful
tool for optimizing multivariate complex functions, and
the details of the method are described by please refer
to Bergstra et al. [22] and are not presented here

Fig. 4. Four homogeneous permeability fields..
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additionally.

3. RESULTS AND DISCUSSION

3.1 The homogeneous 2D reservoir model

In this section, we construct a numerical simulation
model to simulate the storage of CO2 in the saltwater
layer. The flow data obtained based on the numerical

simulation model will be used to form a dataset to train
and evaluate the surrogate model according to the
proposed workflow. Based on the GEM commercial
simulator developed by CMG, the 2D reservoir model is
discretized using a uniform Cartesian grid divided into
32×32×1 grid cells in the x, y, and z directions,
respectively. The homogeneous nature of the reservoir
was mainly considered for the permeability field, and
the porosity was all set to 0.2. In this work, we
constructed four stochastic permeability fields using the
Gaussian covariance model and Kriging geostatistical
simulation method in the open-source Python package
GSTOOLS[23]. Fig. 4 shows the specific distribution form
of these permeability fields.

Further, we set 4 different well control parameters
and 5 different well settings. The simulation time was
set to 10 years, for a total of 120 output time steps. We
divided the acquired flow data into 56 training cases
(70%), 16 validation cases (20%), and 8 test cases (10%).

After the extended hyperparameter optimization is
completed, the model is trained based on the optimized
hyperparameter combinations. Test set cases will not
be present in the training and optimization process to
objectively characterize the performance and error
distribution of the surrogate model.

3.2 Performance of the surrogate flow model

Based on the proposed workflow, we implemented
the agent models for pressure and gas saturation,
respectively. Comparing the simulated flow data, we
validate the performance of the surrogate models on a
test set.

On the test set, the mean MSE for gas saturation
and pressure were 5E-5 and 2E-5, and the MSSIMs were
0.9989 and 0.9998, with the specific error distributions
given in Fig. 5.

4. CONCLUSION
In this study, we propose a new deep learning-

based surrogate model workflow to rapidly form
models with high fidelity for CO2 sequestration cases.
Redesign sessions are avoided by constructing variable
neural architectures and loss functions that can be used
as relevant hyperparameters. Extended
hyperparameter optimization replaces the original
manual trial-and-error session to form high-
performance surrogate models based on flow data. We
validate the performance of the proposed workflow
using a case study of CO2 saltwater sequestration. The
resulting surrogate model can accurately predict state
variables of stratigraphic flow under different
production parameters and well placement settings
over a decade-long prediction time. Thus, the workflow
based on extended hyperparameter optimization is
expected to expand the application of the surrogate
model and provide more timeous technical guidance for
the practical work of carbon storage.
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