An analytical method for evaluating the underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas

Youwei He1*, Yu Qiao1, Yong Tang1, Guoqing Zhao1
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
(*Youwei He: Youwei.he@163.com)

ABSTRACT
Underground hydrogen storage (UHS) is an effective means to solve large-scale energy storage. The depleted gas reservoirs can be used as the potential targets for UHS due to its huge storage space, good sealing ability, and the existing facilities. CO2 can be injected as the cushion gas to reduce the loss of hydrogen and achieve carbon sequestration. This work proposes a novel analytical method to calculate the hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas considering hydrogen storage safety and gas (e.g., CO2, H2, CH4) dissolution in formation water. The multi-components (H2-CO2-CH4-H2O) material balance equations are further developed by considering the edge/bottom water and gas dissolution in water as well as caprock breakthrough and fault instability. The maximum operating pressure of UHS is determined by calculating the caprock-breakthrough pressure and the fault-instability pressure. The proposed method has been applied to evaluate the UHS capacity of a depleted gas reservoir in the Sichuan Basin of China. The maximum pressure threshold of formation is determined to be 42M. The hydrogen storage capacity under different CO2 cushion gas volume conditions is calculated. The study compares with the model without considering dissolution, and the influence of sensitive factors such as temperature and pressure on hydrogen storage capacity is analyzed.

Keywords: UHS, CO2, cushion gas, material balance, storage capacity, depleted gas reservoir

NONMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHS</td>
<td>$\alpha$ The proportion of CO2 occupying the gas-bearing pore space of the formation</td>
</tr>
<tr>
<td></td>
<td>$\alpha$ The dip angle of the fault plane</td>
</tr>
<tr>
<td>UGS</td>
<td>$b$ The proportion of CH4 occupying the gas-bearing pore space of the formation</td>
</tr>
<tr>
<td>SF</td>
<td>$B_w$ Formation water volume coefficient in the process of injection</td>
</tr>
<tr>
<td></td>
<td>$B_{w,dep}$ Formation water volume coefficient in the state of depleted gas reservoir</td>
</tr>
<tr>
<td></td>
<td>$B_{wi}$ The initial formation water volume coefficient</td>
</tr>
<tr>
<td></td>
<td>$c$ The proportion of H2 occupying the gas-bearing pore space of the formation</td>
</tr>
<tr>
<td></td>
<td>$c'$ The cohesion force</td>
</tr>
<tr>
<td></td>
<td>$c_{eff}$ Effective compression coefficient</td>
</tr>
<tr>
<td></td>
<td>$c_f$ Coefficient of rock compression</td>
</tr>
<tr>
<td></td>
<td>$c_w$ Coefficient of water compression</td>
</tr>
<tr>
<td></td>
<td>$\phi$ Internal friction angle</td>
</tr>
<tr>
<td></td>
<td>$G_i$ Original geological reserves of gas reservoir</td>
</tr>
<tr>
<td></td>
<td>$M$ Water body multiples</td>
</tr>
<tr>
<td></td>
<td>$p$ Formation pressure</td>
</tr>
<tr>
<td></td>
<td>$p_{dep}$ Depleted gas reservoir formation pressure</td>
</tr>
<tr>
<td></td>
<td>$p_i$ The initial formation pressure</td>
</tr>
<tr>
<td></td>
<td>$p_{sc}$ Standard pressure</td>
</tr>
<tr>
<td></td>
<td>$\sigma$ The positive stress perpendicular to the fault plane</td>
</tr>
<tr>
<td></td>
<td>$\sigma_h$ The minimum principal stress</td>
</tr>
<tr>
<td></td>
<td>$\sigma_H$ The maximum principal stress</td>
</tr>
<tr>
<td></td>
<td>$\sigma_n$ The effective positive stress</td>
</tr>
<tr>
<td></td>
<td>$\sigma_1$ The maximum effective principal stress</td>
</tr>
<tr>
<td></td>
<td>$\sigma_3$ The minimum effective principal stress</td>
</tr>
<tr>
<td></td>
<td>$R$ Ideal gas constant</td>
</tr>
<tr>
<td></td>
<td>$R_{CO2}$ The CO2 solubility in formation water</td>
</tr>
</tbody>
</table>

* This is a paper for International CCUS Conference 2023 (ICCUSC2023), April 14-15, 2023, Beijing, China.
1. **INTRODUCTION**

The hydrogen energy is a renewable, high-power and high-efficiency energy carrier, which is convenient for storage and conversion[1-4]. China's solar power and wind power industry is large in scale[5-6], but these two types of power utilization are low, and the waste electricity cannot be utilized[7]. The hydrogen energy becomes a favorable energy conversion carrier. By 2035, a hydrogen energy industry system will be formed, and a diversified hydrogen energy application ecology covering transportation, energy storage, industry and other fields will be built[8], as shown in Fig. 1. Along with the implementation of the "carbon neutrality, carbon emissions peak" policy, the hydrogen energy will play an important role as a clean energy source[9-10].

![Fig. 1](image)

Fig. 1 The mode of production, storage and utilization of hydrogen energy

The hydrogen energy storage is mainly divided into the physical hydrogen storage and the chemical hydrogen storage[11]. The physical hydrogen storage mainly includes high-pressure gaseous hydrogen storage, low-temperature liquid hydrogen storage, activated carbon adsorption hydrogen storage, carbon fiber and carbon nanotube hydrogen storage, and underground hydrogen storage. The chemical hydrogen storage mainly includes metal hydride hydrogen storage, liquid organic hydrogen carrier hydrogen storage, inorganic hydrogen storage, and liquid ammonia hydrogen storage. The UHS is an effective way of large-capacity and long-term energy storage[11-13]. Similar to underground gas storage (UGS), natural gas is often stored in depleted oil and gas reservoirs, aquifers, salt...
caverns and some abandoned pit caverns. But there are higher requirements for UHS, and the focus of the UHS research is to store hydrogen in depleted gas reservoirs and salt caverns\textsuperscript{[12, 14-16]}. The UHS in depleted gas reservoir has the advantages of large volume, high geological awareness, good sealing and wide geographical distribution\textsuperscript{[15, 17-21]}, the depleted gas reservoir usually contains a certain volume of residual gas, which can be used as cushion gas; meanwhile, the underground and surface original facilities can be partially utilized to reduce the investment cost of the UHS construction\textsuperscript{[22]}. The development of UHS technology is an effective way to overcome the volatility and intermittency of renewable energy. The hydrogen storage capacity is a key factor for design engineers to consider and is an important indicator of the performance of the UHS. It is important to account for the volume of hydrogen stored in the UHS in real time and to determine the working gas volume at different pressures. Depleted gas reservoirs are the most common and economical form of building the UHS. Replacing valuable primary cushion gas with cheap CO\textsubscript{2} not only reduces the loss of hydrogen but also achieves the purpose of carbon storage\textsuperscript{[21, 23]}. The construction of UHS with CO\textsubscript{2} as cushion gas not only achieves carbon emission reduction, but also improves the utilization of low-carbon energy\textsuperscript{[24-27]}. Compared with the primary cushion gas and N\textsubscript{2}, CO\textsubscript{2} has stronger compressibility, which can improve the CO\textsubscript{2} storage capacity of depleted gas reservoirs and enhance the hydrogen recovery efficiency in the process of hydrogen extraction\textsuperscript{[28-29]}. However, the existing UHS capacity evaluation method cannot accurately evaluate the hydrogen storage capacity in porous media of depleted gas reservoirs using CO\textsubscript{2} as cushion gas. When CO\textsubscript{2} is used as the cushion gas of the UHS of the depleted gas reservoir, it needs to consider the equilibrium relationship of H\textsubscript{2}-CO\textsubscript{2}-CH\textsubscript{4} multi-component so that the hydrogen storage capacity of this reservoir can be evaluated more accurately.

At present, the UHS with CO\textsubscript{2} as cushion gas has not been really applied in the depleted gas reservoirs, and it is in the stage of simulation and experimental research. Hagemann et al.\textsuperscript{[30]} simulated the injection of H\textsubscript{2} and CH\textsubscript{4} into porous media respectively, and pointed out that the displacement was uniform for low injection rate; When the injection rate is high, the viscous force becomes dominant, and the displacement becomes unstable. The lateral diffusion rate of H\textsubscript{2} is faster than that of CH\textsubscript{4}, and the influence of microorganisms on UHS is considered. Pfeiffer et al.\textsuperscript{[31]} simulated UHS in heterogeneous sandstone with N\textsubscript{2} as cushion gas. Lysyy et al.\textsuperscript{[19]} pointed out that the thin gas area is the first choice for pure hydrogen storage, and it is not recommended to store hydrogen in water area. When only pure hydrogen is injected, most of the injected H\textsubscript{2} remains underground as cushion gas; Injecting formation gas as cushion gas leads to higher hydrogen recovery. Enigbokan et al.\textsuperscript{[24]} used CO\textsubscript{2} as cushion gas to simulate the UHS in depleted gas field. The success factor of seasonal storage is that the injected hydrogen can remain closed before extraction. Eddaoui et al.\textsuperscript{[32]} pointed out that biological blockage in UHS is not only bad, but bacteria accumulate in places with high hydrogen saturation, forcing hydrogen to change its path and move in different directions. Bo et al.\textsuperscript{[33]} suggested that the relative permeability curve of hydrogen-brine obtained from experiments should be used when simulating UHS, in order to make the simulation results more robust.

For the capacity calculation of UHS, we could compare with the previous research methods on underground storage of other gases, such as gas storage and CO\textsubscript{2} storage. Yang et al.\textsuperscript{[34]} adopted the advanced material balance method to calculate the dynamic reserves of gas reservoirs, and reviewed the storage capacity after the reconstruction of gas reservoirs. Because the elastic expansion rate of rock and bound water was far lower than that of natural gas (generally 2 - 3 orders of magnitude smaller than that of natural gas ), the influence of the elastic expansion rate of rock and bound water was ignored. Yu et al.\textsuperscript{[35]} investigated the pressure wave propagation velocity by gas reservoir engineering and numerical simulation, determined the buffer distance and accurately evaluated the UGS capacity. Tang et al.\textsuperscript{[36]} simplified the original gas-bearing reservoir into water flooded zone, transition zone and pure gas zone, respectively, given the calculation formula of original gas-bearing pore space loss in each region, and introduced physical property zoning parameters to characterize reservoir heterogeneity, and established the material balance equation considering gas-bearing pore space loss and reservoir heterogeneity. Lai et al.\textsuperscript{[37]} uses the material balance method to evaluate CO\textsubscript{2} storage capacity in depleted wet/dry gas reservoirs. Wang et al.\textsuperscript{[38]} established a dynamic unstable flow analysis method considering complex factors such as multi-period injection-production historical dynamics of gas reservoirs, and drew a relevant theoretical chart based on the characteristics of injection-production operation of strong heterogeneous gas reservoirs. The new method realizes the dynamic unsteady flow analysis of injection-production of UGS, and the storage capacity
fitting accuracy is high. At present, there is still a lack of
calculation of gas storage capacity with cushion gas, so it
is very meaningful to study the gas storage capacity
under different cushion gas volume.

In this paper, we will use the material balance
method to calculate the hydrogen storage capacity with
CO₂ as cushion gas in depleted gas reservoirs,
considering three gases in gas reservoirs: natural gas, CO₂
and H₂. The general sketch diagram of the method used
in this study is shown in Fig. 2.

2. UHS POTENTIAL EVALUATION MODEL CONSIDERING CO₂ AS CUSHION GAS

2.1 Subdivision - numbered sections

In this paper, the basic assumptions for the
derivation of the material balance equation are: (1) The
reservoir physical properties and fluid physical
properties of gas reservoirs are evenly distributed; the
formation pressure at each point of the gas reservoir is
in equilibrium at the same time, that is, the equivalent
pressure at each point is equal; (2) When considering
water-soluble gas, natural gas is dissolved in bound
water and water body under the initial formation
conditions, and its properties are the same as free gas.
There are both free gas and water-soluble gas in the
produced natural gas; (3) Gas mixing is small and not
considered; (4) The change of stratum structure in the
process of UHS operation is not considered.

Under these assumptions, the porous media system
for the UHS can be simplified as an underground
container for gas storage, as shown in Fig. 3. In this
underground container, with the cyclic injection of gas
reservoir, the volume change of gas and water obeys the
principle of material conservation, which can establish
the material balance equation of gas reservoir.

As a result of gravity differentiation, the gas will be
stratified (Fig. 4). We will treat the three gases in layers
and the mixed part will not be considered.

![Fig. 4 The stage of injection about CO₂ as cushion gas and H₂ gas in the porous media of depleted gas reservoir](image)

Considering the water-soluble gas, the molar
conservation relationship of CO₂ and H₂ is: molar
quantity under standard conditions= molar quantity
under formation conditions; the residual gas in the
depleted gas reservoir will be used as cushion gas: the
molar quantity of natural gas in the depleted gas
reservoir = the molar quantity of natural gas in the gas
reservoir after injecting. Eq. (1) to (3) are the equilibrium
equations of H₂-CO₂-CH₄ multicomponent substances.

\[
\begin{align*}
\frac{p_{\text{sc}}V_{\text{CO}_2, \text{inh}}}{Z_{\text{RT}_{\text{sc}}}} &= \frac{pV_{\text{CO}_2}}{Z_{\text{RT}_{\text{sc}}}} + \frac{p_{\text{sc}}V_{\text{CO}_2, \text{dis}}}{Z_{\text{RT}_{\text{sc}}}} \\
\frac{p_{\text{dep}}V_{\text{H}_2, \text{dep}}}{Z_{\text{RT}_{\text{dep}}}} &= \frac{pV_{\text{H}_2}}{Z_{\text{RT}_{\text{dep}}}} + \frac{p_{\text{dep}}V_{\text{H}_2, \text{dis}}}{Z_{\text{RT}_{\text{dep}}}} \\
\frac{p_{\text{inj}}V_{\text{H}_2, \text{inh}}}{Z_{\text{RT}_{\text{inj}}}} &= \frac{pV_{\text{H}_2}}{Z_{\text{RT}_{\text{inj}}}} + \frac{p_{\text{inj}}V_{\text{H}_2, \text{dis}}}{Z_{\text{RT}_{\text{inj}}}}
\end{align*}
\]

The real-time gas-bearing pore space in the
formation is:

\[
V = V_i \left[1 - c_{\text{eff}} \left( p_i - p \right) \right] + V_{\text{w}_p}B_u - W_e
\]

The effective compression factor is expressed as:

\[
c_{\text{eff}} = c_f \left( \frac{s_u + M}{1 - s_u} \right)
\]

The gas-bearing pore space in the original formation
is:

\[
V_i = G_i B_i = G \left( \frac{p}{Z_{\text{RT}_{\text{inj}}}} \right) \left( \frac{p}{Z_{\text{RT}_{\text{dep}}}} \right)
\]

In order to obtain the H₂ injection volume, it is
necessary to calculate the proportion of the other two
gases in the pore space. As shown in Fig. 4, excluding the
water invasion space in the formation, the proportion of
pore space occupied by CO₂ is “a”, that is:

\[
V_{\text{CO}_2} = aV
\]

The volume of CO₂ dissolved in the formation is:

\[
V_{\text{CO}_2, \text{dis}} = \left[ V_i \left( s_u + M \right) - V_{\text{w}_p} \right] \frac{aV}{1 - S_u} B_u - W_e
\]

Substituting Eq. (4) - Eq. (8) into Eq. (1), the
proportion of CO₂ in the pore space will be calculated.

Similar to the calculation of the proportion of CO₂,
the proportion of pore space occupied by CH₄ is “b”:

\[
V_{\text{H}_2} = bV
\]
The pore space of the depleted gas reservoir is:

$$V_{dep} = V_{i} - c_{w} \left( p_{r} - p_{w} \right) + V_{u,p} - W_{e,dep} \quad (10)$$

The volume of CH$_4$ dissolved in the formation is:

$$V_{CH_4,de} = \frac{b S_{w}}{1 - S_{n}} R_{CH_4} \quad (11)$$

The volume of CH$_4$ dissolved in in depleted gas reservoirs:

$$V_{CH_4,de,dep} = \frac{\left( 1 - a - b \right) V_{CH_4,de}}{1 - S_{n}} R_{CH_4,dep} \quad (12)$$

Substituting Eq. (9)-Eq. (12) into Eq. (2), the proportion of CH$_4$ in the pore space will be calculated.

After calculating the proportion of pore space occupied by CO$_2$ and CH$_4$, the amount of storage space retained for H$_2$ can be determined:

$$V_{H_2} = \left( 1 - a - b \right) V \quad (13)$$

The volume of H$_2$ dissolved in the formation is:

$$V_{H_2,de} = \frac{\left( 1 - a - b \right) V_{H_2,de}}{1 - S_{n}} R_{H_2} \quad (14)$$

The calculated $V_{H_2, inj}$ value is the UHS capacity of the target depleted gas reservoir.

### 3. DETERMINE THE MAXIMUM PRESSURE THRESHOLD

Calculating the cap-rock breakthrough pressure and fault-slip pressure of the UHS based on the cap and fault properties of the target depleted gas reservoir to further estimate the maximum pressure threshold of the UHS.

#### 3.1 Mechanical integrity of caprock

The most classical risk assessment method for shear failure of caprock is based on Mohr-Coulomb criterion in rock mechanics. The cap-rock breakthrough pressure is calculated by the following equation:

$$\chi = 1 - \frac{\left( \sigma_{1} - \sigma_{3} \right) / 2}{c \cos \phi + \left( \sigma_{1} + \sigma_{3} \right) \sin \phi / 2} \quad (15)$$

where, $\chi$ is the cap safety factor; when $\chi = 0$, the shear failure occurs; The maximum and minimum effective principal stresses are the main factors affecting the risk of shear failure of caprock, which are closely related to the change of formation pressure.

#### 3.2 Fault mechanical stability

Based on the study of gas reservoir geology, the rock mechanics parameters of caprock were obtained by indoor rock mechanics experiment technology and in-situ stress parameters were obtained by small-scale hydraulic fracturing test, and the risk degree of caprock damage was quantitatively evaluated by safety index (SF) to evaluate the integrity of caprock. The fault-slip pressure is calculated by the following equation:

$$ST = \frac{\sigma_{1}}{\sigma_{h}}$$

$$\sigma_{s} = \frac{\sigma_{1} + \sigma_{3}}{2} + \frac{\sigma_{1} - \sigma_{3}}{2} \cos 2\alpha$$

$$r = \frac{\sigma_{1} - \sigma_{3}}{2} \sin 2\alpha$$

where, ST is the fault slip trend index; when ST < 0.6, the fault is mechanically stable; when ST $\geq$ 0.6, the fault is at risk of slip; the larger the ST, the higher the risk of slip.

The cap-rock breakthrough pressure and the fault-slip pressure are compared, and the smaller one is the maximum pressure threshold of the UHS.

### 4. CASE STUDY

Well PL4 is in the southeast of Penglai area and it is suitable for gas storage: the surface environment is favorable and the distance from the production area is moderate; there is no large-scale fault in the area, which is far away from the outcrop of the sealing layer; the depth of gas storage target layer is more than 800m; the water body is small, and it will be conducive for production. Table 1 shows the geological parameters and production parameters of the gas reservoir controlled by this well.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_i$</td>
<td>$8000 \times 10^4$ [m$^3$]</td>
<td>$p_{dep}$</td>
<td>15 [MPa]</td>
</tr>
<tr>
<td>$p_i$</td>
<td>37 [MPa]</td>
<td>$V_{w,p}$</td>
<td>84300 [m$^3$]</td>
</tr>
<tr>
<td>M</td>
<td>0.18</td>
<td>$T_i$</td>
<td>79[$^\circ$C]</td>
</tr>
<tr>
<td>$c_f$</td>
<td>5.7583 [MPa$^{-1}$]</td>
<td>$T_{dep}$</td>
<td>79[°C]</td>
</tr>
<tr>
<td>$c_w$</td>
<td>4.21×10$^{-4}$ [MPa$^{-1}$]</td>
<td>$p_{sc}$</td>
<td>0.101325 [MPa]</td>
</tr>
<tr>
<td>$S_w$</td>
<td>0.46</td>
<td>$T_{sc}$</td>
<td>20[°C]</td>
</tr>
<tr>
<td>m</td>
<td>10 [g/L]</td>
<td>$W_{e,dep}$</td>
<td>146166 [m$^3$]</td>
</tr>
<tr>
<td>$\sigma_z$</td>
<td>70[MPa]</td>
<td>$\sigma_H$</td>
<td>55 [MPa]</td>
</tr>
<tr>
<td>c</td>
<td>10 [MPa]</td>
<td>$\sigma_h$</td>
<td>45 [MPa]</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>43 [$^\circ$]</td>
<td>$\phi$</td>
<td>11 [$^\circ$]</td>
</tr>
</tbody>
</table>

For the utilization of the material balance equation, we need to calculate the solubility, gas deviation factor and formation water volume coefficient that change during injection, as shown in Fig. 5.
formation water and better compressibility, which will have a positive impact on the construction of UHS. The designed formation pressure is 42MPa, calculated \( \chi > 0 \), and ST is less than 0.6. The safety risk is low, and it is within the scope of safety.

The model can obtain the values of CO\(_2\) cushion gas volume and working gas volume. When \( V_{CO2\_inj} \) is \( 3000 \times 10^4 \) m\(^3\), the final hydrogen storage capacity is \( 6792 \times 10^4 \) m\(^3\); When \( V_{CO2\_inj} \) is \( 4000 \times 10^4 \) m\(^3\), the final hydrogen storage capacity is \( 6076 \times 10^4 \) m\(^3\); The more CO\(_2\) cushion gas, the smaller the UHS capacity will be. With the injection of H\(_2\), the ratio of natural gas and CO\(_2\) in the formation is decreasing. Because of its stronger compressibility, the proportion of CO\(_2\) decreases faster, and for cushion gas, it will provide more space for working gas.

Fig. 6 H\(_2\) storage capacity when \( V_{CO2\_inj} = 3000 \times 10^4 \) m\(^3\) and \( V_{CO2\_inj} = 4000 \times 10^4 \) m\(^3\) (left); the injected volume of H\(_2\) and the ratio of H\(_2\) to the total injected gas volume under different CO\(_2\) cushion gas volume.

Fig. 7 Ratio of CO\(_2\), CH\(_4\) and H\(_2\) to pore space in formation \( (V_{CO2\_inj} = 4000 \times 10^4 \) m\(^3\))

5. MODEL COMPARISON

For water-bearing gas reservoirs, especially existing CO\(_2\) injection, it is inevitable to consider solubility. In this model, the water multiple of gas reservoir is 0.18, and the dissolved gas in water will have a great influence on the hydrogen storage capacity of UHS. Ignoring the dissolution term in our material equation is the material balance equation without considering dissolution. The equation is calculated in the same way, and the results are compared as shown in Fig. 8.

The UHS capacity will decrease without considering dissolution. When \( V_{CO2\_inj} \) is \( 4000 \times 10^4 \)m\(^3\), the UHS capacity decrease by about 7.9% without considering dissolution. The proportion of CO\(_2\) will become larger and the proportion of hydrogen will become lessened. It shows a situation similar to “hysteresis effect”, in which the pore space occupied by hydrogen decreases.

6. SENSITIVITY ANALYSIS

Temperature and pressure are the main factors affecting the capacity of gas storage. In the process of UHS operation, the temperature of injected natural gas and the potential energy will change the temperature of the formation. The change of temperature for the parameters such as solubility, formation volume coefficient, gas deviation factor and so on. Of course, the change of the maximum pressure will also have a great impact on the gas storage capacity. We calculate the real-time hydrogen storage volume by changing the formation temperature and pressure respectively, and the result is shown in Fig. 9.

As shown in Fig. 9, the decrease of formation temperature will increase the amount of the UHS capacity. \( V_{CO2\_inj} = 4000 \times 10^4 \) m\(^3\), compared with the initial formation temperature, the temperature drops by 10\(^\circ\)C, and the hydrogen storage capacity increases by about 5.6%. The increase of the maximum pressure threshold will evidently expand the UHS capacity. The UHS capacity is less affected by temperature and more affected by formation pressure. However, it should be noted that
both temperature and pressure changes will have a great impact on reservoir safety under geological conditions.

7. CONCLUSIONS

Based on the law of conservation of molar matter, the material balance equation in the injection process of UHS considering CO₂ as cushion gas was established. We determine maximum pressure threshold by calculating the breakthrough pressure of caprock and the instability pressure of fault. The controlled UHS capacity of well PL4 is obtained. The change of gas volume ratio shows the superiority of CO₂ as cushion gas.

When CO₂ as cushion gas, especially in the presence of water, solubility is a factor that must be considered. Compared with the method without considering dissolution, the UHS capacity of the method will increase under the same cushion gas volume.

The decrease of formation temperature will increase the UHS capacity. Increasing the maximum pressure threshold will also increase the UHS capacity. Compared with change of temperature, the change of pressure has a greater influence on the expansion of UHS capacity.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Central Sichuan Division, Petro China Southwest Oil & Gas field company for providing their data.

DECLARATION OF INTEREST STATEMENT

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All authors read and approved the final manuscript.

REFERENCES


