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Abstract 
Wastewater treatment industry, a top ten carbon 
emission source, has been significantly concerned in 
recent years. However, unclear system boundaries and 
undisclosed databases make it hard to estimate the 
greenhouse gas (GHG) emission from the wastewater 
treatment industry, especially in developing countries. 
Quantifying the total GHG emission characteristics at 
national level is helpful to identify the most emitted 
processes and propose suitable carbon mitigation 
strategies. This study accurately estimated the GHG 
emissions from China’s wastewater treatment industry 
by a model combined with operational data integrated 
methods and Intergovernmental Panel on Climate 
Change method. Then, the spatial distribution analysis 
and possible influential factors of total GHG emissions 
were further investigated by geographic model, Pearson 
correlation model and principal component analysis. 
Results showed that the national GHG emission from the 
total 4,205 wastewater treatment plants (WWTPs) in 
China in 2017 was 34.18 Mt CO2-eq, with 64.5% emitted 
from the consumption of electricity and chemicals. The 
GHG reduction strategies need to focus on process 
optimization and improvement at WWTPs, especially for 
the energy source shift, improved aeration, and on-site 
N2O emission from biological treatment process. After 
analyzing the spatial distribution characteristics, the 
total emission in the eastern region was approximately 
four times higher than that in the western region 
according to the Hu Line. Gross domestic product (GDP) 
and the treated volume of wastewater had strong 
positive correlations to the total GHG emissions in most 
first-tier cities, while there were no significant impacts 
on non-first-tier cities. Additionally, the impact of 
wastewater treatment scale on the discharge intensity is 
not significant, but the impact of technology is relatively 
obvious. 
Keywords: Wastewater treatment, GHG emission, 
operational data integrated methods, spatial 
distribution 

Nonmenclature 

GHG Greenhouse gas 
WWTPs Wastewater treatment plants 
EF Emission factor 
IPCC Intergovernmental Panel on  

Climate Change 
USEPA United States Environmental 

Protection Agency 
EDGAR Emissions Database for Global 

Atmospheric Research 
ODIM Operational data integrated 

methods 
TN Total nitrogen 
COD Chemical oxygen demand 
AAO Anaerobic-anoxic-oxic 
AO Anoxic-oxic 
SBR Sequencing batch reactors 
OD Oxidation ditch 
GDP Gross domestic product 
GWP Global warming potential 
AD anaerobic digestion 
PCA Principal component analysis 
CHP combined heat and power 
ANAMMOX Anaerobic ammonium oxidation 
 LCA life cycle assessment 

1. Introduction
Global warming is mainly attributed to the 

increase in greenhouse gas (GHG) emissions, impairing 
not only the whole ecosystem, but also the social and 
economic system (Wang et al., 2016). By the end of 
2019, China accounts for about 27% (1.41 × 1011 t CO2-
eq) of world’s GHG emissions, which is equal to the sum 
of the United States, India, Russia, and Japan. As a result, 
China is facing greater pressure on carbon emission 
reduction. In 2015, at the Climate Conference in Paris, 
China promises to reach the peak of carbon emissions 
around 2030. Furthermore, in September 2020, China 
proposed to achieve carbon neutrality before 2060 to 
mitigate the extreme effects of climate change. 
According to statistics in most developed countries, the 
wastewater treatment industry accounts for 1-2% of 
their total GHG emission, ranking among the top ten 
carbon emission industries (Li, 2022). However, this 
proportion was seldom reported in developing 
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countries, such as China. Identifying the carbon 
emission characteristics helps to clarify the most 
emitted process, thus delivering more efficient 
mitigation pathways. 
To date, several investigations have provided limited 
information to understand GHG emission from WST 
industry in China, such as energy-water nexus in 
cities/regions (Liao et al., 2020); direct CH4/N2O 
emissions (Bao et al., 2014, Wang et al., 2011); energy-
related or life-cycle GHG emissions at full-scale 
wastewater treatment plants (WWTPs) (Bao et al., 
2016); GHG emissions based on different sludge 
treatment and disposal ways (Feng, 2019, Chen and Kuo, 
2016) etc. Although the existing reports have estimated 
the CH4 and N2O emission from wastewater treatment 
sector (Kumar et al., 2021, Wei et al., 2020), the data is 
unreliable and inadequate for most developing 
countries, including China. Besides, no holistic study has 
reviewed these works to understand the complete 
picture of GHG emission from China’s wastewater 
treatment system, and uncertainty GHG inventories 
from each research also make it a challenge to fully 
evaluate the GHG emission.  

When accounting GHG emission from WWTPs at 
city/province/country level, emission factors (EFs) 
approach reported by various organizations, such as 
Intergovernmental Panel on Climate Change (IPCC), 
Danish Center for Environment and Energy, United 
States Environmental Protection Agency (USEPA), and 
Emissions Database for Global Atmospheric Research 
(EDGAR) etc. (Xi et al., 2021), is conducted. Among them, 
the IPCC method is the most used, but there is a high 
degree of uncertainty associated with the huge 
differences. This is because the IPCC method is roughly 
calculated by per capita emissions, lacking the data 
accuracy. Cai et al. (2015) also concluded that the 
emission factor of anaerobic process is significantly 
lower than the default value of IPCC, resulting in a lower 
underestimated value of GHG evaluation. According to 
Hartley (2018), the selection of wastewater treatment 
technology is the biggest factor affecting GHG emission, 
and Xi et al. (2021) proposed that operational data 
integrated methods (ODIM) that calculate local emission 
by different treatment processes was more accurate 
than IPCC approach when evaluate GHG emission at city 
level. Therefore, it is necessary to use detailed 
calculation models to quantify GHG emission accurately. 

In this study, a model of ODIM combined with IPCC 
method will be used to evaluate direct CH4 and N2O from 
a total 5,282 WWTPs in 660 cities, covering six commonly 
used wastewater treatment processes. Then, suitable 
strategies for GHGs control will be proposed after 
identifying which processes or sources have higher GHG 
emission amounts. Furthermore, the spatial distribution 

analysis and the effects of regional development 
characteristics, the WWTP scale and operational 
technology on GHG emission will be analyzed. 

2. Methodology
2.1 Data source and system boundary

The base year used in this study was 2017. 
Information of wastewater treatment characteristics, 
such as total nitrogen (TN), chemical oxygen demand 
(COD), electricity and chemical consumption, and used 
biological treatment technology in 4,205 WWTPs can be 
obtained by the Statistical Yearbook of Urban Drainage 
(SYUD, 2018). There were six commonly used biological 
wastewater treatment processes at WWTPs in China, 
including anaerobic-anoxic-oxic (AAO), anoxic oxic (AO), 
oxidation ditch (OD), sequencing batch reactors (SBR), 
membrane bioreactor (MBR), biofilm. City development 
characteristics, such as gross domestic product (GDP), 
population density, daily water consumption, 
investment, were found from Statistical Yearbook of 
Urban Construction (SYUC, 2017). Hong Kong, Taiwan, 
Macao and marine environments are excluded due to 
the lack of information. Besides, the regional power grid 
baseline emission factor of six regions in 31 provinces 
was collected by the Ministry of Ecological Environment 
(MEE, 2017).  

The system boundary for accounting GHG 
emissions in this study only considers the wastewater 
treatment and preliminary sludge treatment at WWTPs, 
as shown in Fig.1. The main GHGs produced during WST 
are mainly CO2, CH4 and N2O, with global warming 
potential (GWP) of 1, 25 and 298. According to Koutsou 
et al. (2018), on-site GHG emissions are mainly direct 
N2O and CH4 from microorganisms in the secondary 
sedimentation tank, while off-site GHG emissions are 
related to the consumption of energy and chemicals. 
Therefore, this study quantified on-site from biological 
processes and off-site GHG emissions from the 
consumption of electricity and chemicals, as shown in Eq. 
(1):  

2 4

5,282

1

WWTPs N O CH electricity PAM

i

GHG GHG GHG GHG GHG
=

= + + +
  (1) 

Besides, due to a low proportion of anaerobic 
digestion (AD) of nearly 3% (Zhang et al., 2017), the 
recovered CH4 is not calculated in GHG emission 
evaluation in this study. 
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Fig. 1. System boundary at an AAO-based WWTP. 
2.2 Quantification of GHG emission 

Due to various wastewater treatment technologies, 
ODIM was established to estimate the direct N2O and 
CH4 based on different processes and practical 
operational data, which is obtained by the average value 
from over 40 real WWTPs (Xi et al., 2021). This is because 
ODIM is more accurate than IPCC with the consideration 
of variability in operating conditions and changes in the 
influent load.  

On-site GHG emissions at each WWTP include 
direct N2O (as kg N2O/y) and CH4 (as kg CH4/y), as shown 
in Eq. (2)-(3): 
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i
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      (2) 
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where TNremoval and CODremoval are the removal 
amounts of TN (TNinlet - TNeffluent) and COD (CODinlet - 
CODeffluent) at each WWTP. EFw1, EFw2 are the EFs of direct 
N2O and CH4 emissions from each WWTP with six kinds 
of biological treatment technologies (Xi et al., 2021). 
44/28 is the conversion factor of kg N2O-N into kg N2O. 

Off-site GHG emissions from the consumption of 
electricity (as kWh/y) and PAM used for sludge 
treatment (as kg/y) are presented in Eq. (4)-(5): 

5,282

3,
1

electricity i w i

i
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=

= 
             (4) 

, 4

660
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                 (5) 

where EFw3 is regional power grid baseline emission 
factor in China (MEEC, 2017), kg CO2-eq/kWh; CP is the 
consumption of PAM at WWTPs for one year; EFw4 is the 
emission factor for PAM (1.5 kg CO2-eq/kg) (Chai et al., 
2015). Due to the lack of data, the amount of PAM 
consumption was only presented at city level, not at 
WWTP scale. 
2.3 Principal component analysis 

Principal component analysis (PCA) is a 
multivariate statistical method to investigate the 
correlation between multiple variables. It derives a few 
principal components from the original variables, thus 
retaining as much information of the original variables as 

possible and are not related to each other. In this study, 
several city development indicators and wastewater 
treatment characteristics were chosen to investigate 
their effects on total GHG emissions from wastewater 
treatment industry.  

The general procedure if PCA is shown as the 
following: 

a. Indicators contributing both positively and 
negatively to the GHG emission need to be standardized 
by Eq. (6)-(7): 

min

max min
100%iX X

X X

−


−                 (6) 

max

max min
100%iX X

X X

−


−                 (7) 
b. The raw data matrix will then be reorganized 

with each row representing a provincial district and each 
column representing a different city developing index. 
Then, the new data matrix, X, is normalized to have zero 
mean based on its number of columns, m. 

c. The covariance matrix R is reconstructed based 
on the following equation 8: 

1
1

MR X X
m

=
−                    (8) 

where M is the conjugate transpose operator. 
d. Singular-value decomposition (SVD) 

decomposition is performed on R, which is presented in 
Eq. (9): 

MR V V=                         (9) 
where Λ is the diagonal matrix of the eigenvalues 

of R in decreasing numerical order, and V is the matrix of 
the eigenvectors of R as columns. 

e. Matrix N is constructed by selecting the first “α” 
columns of V corresponding to the first principal 
eigenvalues. It is then used to transform the original 
space of variables to the reduced dimension subspace: 

The columns of matrix N are the selected 
eigenvectors and are called loadings. The W matrix is the 
reduced subspace of the original variable space, and its 
vectors are called scores.  

 
3. Results and discussion 
3.1 GHG emissions quantification 

According to the carbon emission database, the 
total GHG emission of China in 2017 was estimated to be 
9.34 billion tons CO2-eq. From calculation, the total GHG 
emission from China’s WST industry was estimated to be 
34.18 Mt CO2-eq, which accounted for 0.4% of total 
emission. The reason why the relative lower proportion 
of GHG emission in wastewater industry than that of 
developing countries may be attributed to the industrial 
structure in China (Guo et al., 2019). Fig.2 presents the 
reported national GHG emission from the wastewater 
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treatment industry worldwide ((Koutsou et al., 2018; 
Nayeb et al., 2019; Shrestha et al., 2022; Noyola et al., 
2016; Hall et al., 2011; Singh et al., 2017)). In sum, the 
total GHG emission in China was quite higher than other 
countries, but the emission intensity in China (0.37 kg 
CO2-eq/capita/day) was quite like 0.36 in Nepal 
(Shrestha et al., 2022). This value in Greece was 
relatively lower than that in China because the system 
boundary considered the GHG emission from sludge 
disposal and wastewater discharge (Koutsou et al., 2018). 
Besides, other differences may be due to the variance in 
used EF value. 

 
Fig.2. Comparison of total GHG emissions and emission 
intensity in different countries/regions. 

Almost 64.5% of GHG emissions (20.3 Mt CO2-eq 
per year) was from off-site GHG emission, and 99.3% off-
site GHG emissions were due to electricity consumption. 
Electricity consumption mainly comes from the 
upgrading pumping stations, aeration system and sludge 
reflux etc. For example, aeration accounts for 45-75% of 
total energy costs (Rosso et al., 2008). This means that it 
is efficient to control aeration conditions to save energy, 
and it was reported that 22% of off-site emission will be 
reduced by modifying extended aeration process 
conditions (Yapıcıoğlu, 2021). Moreover, with the 
increase in the clean energy utilization process in China 
(Zhang et al., 2021), the wastewater treatment industry 
can also effectively reduce the reliance on electricity 
consumption. Besides, Zeng et al. (Zeng et al., 2017) 
assumed that the GHG emission may decrease by 32.2% 
if all WWTPs operate efficiently. Therefore, it is urgent to 
improve WWTPs efficiency to achieve GHG reduction in 
the future. In contrast, the off-site GHG emission from 
PAM consumption was relatively low, but accurate 
dosing during wastewater treatment could avoid nearly 
95% of them (Li et al., 2022). 

According to Fig. 3, a color change from light pink 
to dark pink indicates the GHG emission volume at the 
provincial level (Mt/y), and the pie charts represent the 
percentage of different stages of the wastewater 
treatment industry. Overall, the spatial distribution of 
GHG emission of wastewater treatment industry was 
basically in line with the development process of urban 
wastewater treatment facilities in China. In particular, 

the Hu line clearly distinguishes between high emission 
areas and low emission areas, with higher GHG emission 
in the east, accounting for approximately 76.4% of total 
emission. Among six regions, North China emitted the 
most GHG emissions (9.62 Mt CO2-eq), followed by 6.62 
Mt, 5.80 Mt and 4.36 Mt in East China, and Central China, 
respectively. Most provinces located in Northern regions 
accounted for a higher proportion of CH4 and N2O 
emission, which may be attributed to higher EFgrid and 
relatively low discharge standards. Five provinces 
emitted almost 37.3% of GHG emission in these regions, 
with the order: Shandong (3.42 Mt) > Guangdong (2.51 
Mt) > Jiangsu (2.40 Mt) > Zhejiang (2.38 Mt) > Hebei (2.06 
Mt). The GHG emission of other provinces in these three 
regions ranged from 0.012 Mt CO2-eq (Tibet) to 1.56 Mt 
CO2-eq (Sichuan). Fig.3 also illustrates the amount and 
proportions of different types of GHGs, and their 
decomposition trends mainly like that of total GHG 
emissions. Generally, the on-site N2O emission was twice 
higher than direct CH4 emission. This is because N2O 
from the activated sludge tanks at WWTPs is the 
dominant source of GHG emissions (Parravicini et al., 
2016), while CH4 generated by sludge AD could be 
further recovered. So, controlling direct N2O emission at 
WWTPs seems more important. 

 
Fig.3. Total and decomposition of GHG emission from 
China’s wastewater treatment industry in each province. 
3.2 Influential factors of GHG emission 
3.2.1 Effect of regional characteristics and development 

Regional urbanization rate, area, population size, 
and GDP may have significant influence on GHG emission 
of 31 provinces in China, which is similar with the results 
by Wei et al. (2020), who found the correlation between 
sludge production and these factors. Pearson correlation 
analysis was used to analyse the effects of per capita 
GDP, urbanization rate, population size and area on total 
provincial GHG emission. Correlation coefficients with 
higher than 0.75 (with p < 0.01) indicates a strong 
positive correlation (Fig 4. (c) and (d)), while fitting the 
degree of urbanization rate and area (Fig. 8. (a) and (b)) 
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was not enough to prove their relevance. The main 
reason might be the relatively concentrated 
urbanization rate (45-65%) and area (smaller than 
500,000 km2) of most provinces. Both GDP and 
population size had strong positive correlation with total 
GHG emission from China’s wastewater treatment 
industry, the higher population size and per capita GDP 
are, the higher GHG emission is. Population size (R2 = 
0.9073) exhibited a more significant effect on GHG 
emission than GDP (R2 = 0.8866). For example, the 
population of Jiangsu and Sichuan was approximately 
the same (just over 80 million), but the GHG emission of 
Jiangsu was nearly 1.22 times more than that of Sichuan. 

 
Fig.4. Linear correlation analyzing between total GHG 
emission and urbanization rate (a), area (b), population 
(c) and per capita GDP (d) of different provinces in 2017. 

PCA was used to analyse the effects of regional 
development characteristics, such as population density, 
construction land, investment, daily water consumption 
and sewer pipeline density on GHG emission. According 
to the results, 57.6% of the input data’s variation could 
be explained by the first two principal components (PC1 
and PC2), and PC1 has a bigger influence on GHG 
emission than PC2. According to Fig.5, population 
density, investment and construction land had positive 
correlation with GHG emission, while daily water 
consumption and sewer pipeline density showed 
negative effects. The data of most non-first-tier cities 
with less development is mainly concentrated on the 
original point, presenting a vertical strip distribution, 
which means they are basically unaffected by these 
factors. In contrast, in most developed cities, such as 
Beijing (BJ), Chongqing (CQ), Wuhan (WH), Chengdu (CD), 
Shenzhen (SZ) and Guangzhou (GZ), are far away from 
the coordinate X axis, indicating that construction land 
and investment influenced significantly on GHG emission. 
This is mainly because there are more WWTPs in 
metropolis with more construction land, in highly 
developed cities with higher investment. It is interesting 
that Hanzhong (HZ’) is a medium-size city, but the 
investment was quite large, resulting in higher 
correlation between affecting factors and GHG emission. 
On the Y axis, Ningdong (ND) and Sanya (SY) were most 

affected, which is mainly attributed to their location and 
industrial structure.  

 
Fig.5. Principal component analysis. 
3.2.2 Effect of operational conditions 

The effects of influent and effluent quality on total 
GHG emission are presented in Fig.6. As mentioned 
above, off-site GHG emission accounted for 90.58% of 
total emission, so the effects of four indexes on these 
two categories are similar. The higher CODinfluent, TNinfluent, 
CODeffluent, and TNeffluent concentration, the higher total 
and off-site GHG emission. Similarly, the highest on-site 
GHG emission is obtained with the largest and TNinfluent, 
but CODinfluent ranged from 0.4-0.6 Mt emitted more on-
site GHGs than the two groups with higher CODinfluent 
(0.6-0.8 Mt and 0.8-1 Mt). When effluent COD is in the 
range of 0.4-0.6 Mt and TN in the range of 0.1-0.2 Mt, 
the highest on-stie GHG emission was generated. This 
means that stricter discharge standards with higher 
discharge quality have limited influence on on-site GHG 
emission. Besides, all indexes exhibited low direct but 
high indirect GHG emission due to more complicated 
sources of indirect GHG emission (energy and chemical 
consumption, sludge transportation and disposal).  
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Fig.6. The relationship between GHG emission and 
CODinfluent (a), TNinfluent (b), CODeffluent (c), and TNeffluent (d). 

Although the GHG emission at WWTPs was calculated 
by various wastewater treatment technologies, the 
electricity consumed at each WWTP was quite different. 
Moreover, the WWTP scale may also affect the GHG 



6 

 

emission. Therefore, the relationship between various 
scales and technologies of WWTPs and the GHG 
emission intensity at WWTPs was studied, as shown in 
Fig. 9. The results indicated that there was no statistically 
significant difference between GHG emission intensity at 
WWTPs and scale with the capacity larger than 10,000 
t/d, but the GHG intensity for WWTPs with scale < 10k 
m3/d is nearly twice higher than other scales. This may 
be attributed to indirect emissions or electricity 
consumption by fluctuations in influent loading and the 
lack of continuous monitoring (Xi et al. 2021). However, 
from analysis of mean value, the larger WWTP scale 
(smaller than 40,000 t/d), the lower the GHG emission 
intensity. In contrast, technology selection affects 
greatly on the intensity of GHG emission, and the mean 
intensity of six technologies is in the order: AO (0.776 kg 
CO2-eq/m3) > SBR (0.636 kg CO2-eq/m3) > MBR (0.603 kg 
CO2-eq/m3) > biofilm (0.502 kg CO2-eq/m3) > AAO (0.373 
kg CO2-eq/m3) > OD (0.371 kg CO2-eq/m3). The result is 
quite different from the study reported by Bao et al. 
(2016), they found that the total GHG emission from a 
SBR-based WWTP was 53.07% (m3 treated wastewater) 
higher than an AO-based WWTP, which may be 
attributed to higher electricity intensity of SBR. 
Moreover, Liao et al. (2020) found that AAO-MBR 
technology has the highest total GHG emission intensity 
(0.79 t CO2-eq/m3 wastewater), primarily due to its large 
electricity intensity required. This reason may be 
because AAO and OD are the most used technologies at 
most WWTPs with larger scale in China, resulting in 
relatively lower GHG emission intensity, which can be 
proven by He et al. (2019). They found that the energy 
consumed from different methods are influenced greatly 
by the treatment capacity, and SBR is more efficient at 
small-scale WWTPs (<10×104 m3/d), with energy 
consumption of 0.128-0.424 kWh/m2, while oxidation 
ditch and AAO has better performance at medium-scale 
(10-20×104 m3/d) and large-scale WWTPs (>20×104 
m3/d), consuming 0.126-0.434 kWh/m3 and 0.141-0.473 
kWh/m3, respectively. Based on the above, it is efficient 
to choose suitable treatment capacity at WWTPs with 
various technologies to obtain less GHG emission 
intensity. Besides, when building new WWTPs, it is 
necessary to investigate actual treatment capacity, 
aiming to choose suitable wastewater treatment 
methods to reduce GHG emission. 

 
Fig.7. The distribution curve of GHG emission intensity 
from WWTPs: different technology (a), different scale (b); 
the total GHG emission and emission intensity of six 
technologies (c); the distribution of WWTPs with six 
technologies of different scales (d). 
 
4. Challenges 
4.1 Energy sufficient technologies may cause more GHG 
emission 

With the continuous improvement of sustainable 
WWTPs, various technologies, such as advanced 
anaerobic digestion, turbine engine or fuel cell, and 
combined heat and power (CHP), were proposed to 
achieve the goal of energy self-sufficiency. However, this 
energy self-sufficient or ever output WWTPs, such as 
Strass, they may not realize ‘carbon neutralization’, 
because more N2O emission is generated by anaerobic 
ammonium oxidation (ANAMMOX) process. For example, 
De Haas compared six different processes with life cycle 
assessment (LCA) and found that A/O released the least 
GHG emission, with 86 kg CO2-eq/mL wastewater, while 
the side stream of ANAMMOX emitted the highest GHG 
emission (De Haas, 2018). Although new technologies 
bring some benefits, such as energy self-sufficiency, if 
the problem of N2O emissions cannot be solved, this 
model is far from being "environment-friendly". 
Therefore, how to solve the N2O problem in terms of 
technology development in the future is the next step of 
ANAMMOX. 
4.2 Stricter discharge standards may increase more 
GHG emission 

In recent years, more and more high "local 
discharge standards" have come out. For example, the 
government in Shenzhen city has just announced that 
the water quality of main rivers should meet the 
requirements of surface water IV (COD≤30, BOD≤56, 
P≤0.3, NH3-N≤1.5 etc.) by 2025. Generally, the stricter 
discharge standard means better water quality. However, 
when increasing nitrogen removal (especially smaller 
than 5 mg N/L), the amount of total GHG emissions could 
also significantly increase, while no clear growth on GHG 
release with phosphorus removal. According to Foley et 
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al. (Foley et al., 2010), daily GHG emissions of different 
process and treatment standards ranged from 0.25 to 
0.6 t CO2-eq/ML, which was attributed to the nitrogen 
removal rate. Moreover, more chemical agents such as 
polyaluminium chloride (PAC) and PAM for dewatering, 
have been widely used in WWTPs to achieve better 
water quality, which not only increase GHG emission, but 
also produce more the sewage sludge for wastewater 
treatment per unit (Wang, 2018). 

 
5. Conclusion 

This paper proposed a model of ODIM combined with 
IPCC method to accurately estimate GHG emission from 
high-population density cities in wastewater treatment 
industry, using China as a case study. In 2017, the 
national GHG emission from total 4,205 WWTPs was 
34.18 Mt CO2-eq, with an emission intensity of 0.37 kg 
CO2-eq/capita/day. Compared with developing countries, 
the proportion of GHG emission from China’s 
wastewater treatment industry was relatively low, but 
the emission intensity is relatively similar. The system 
boundary and the unification of accounting methods will 
be the important premise and foundation for the future 
international comparison. Due to nearly 64.5% of GHG 
emissions being generated from electricity consumption, 
the mitigation strategies should be energy source shift, 
improved aeration, and recovered CH4 utilization etc. 
According to the Hu Line, the total GHG emissions in 
Eastern China was approximately four times higher than 
that in the Western China. PCA indicated that GDP and 
the treated volume of wastewater had strong positive 
correlations to the total GHG emissions in most first-tier 
cities. Due to the EFs for direct CH4 and N2O in this study 
were used the average values of reported studies, but 
still lacking accuracy. The differences in EF are affected 
by various regions and operational conditions at WWTPs, 
so more detailed EF analysis and scenario analysis should 
also be further investigated. These future studies may 
help to formulate specific policies for GHG emission 
reduction with the consideration of local conditions. 
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