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ABSTRACT 
In recent years, AI technology has been used to 

evaluate carbon sequestration reservoirs and caprocks, 
but the black-box nature of neural networks raises 
credibility concerns. This study employs the Kolmogorov-
Arnold Network (KAN) to interpretably characterize 
carbon sequestration caprocks, including lithology 
identification and porosity prediction. Inspired by the 
Kolmogorov-Arnold representation theorem, KANs 
feature learnable activation functions on edges and 
univariate spline functions, enhancing both accuracy and 
interpretability. Smaller KANs achieve accuracy 
comparable to larger MLPs in data fitting and solving 
partial differential equations. For lithology identification, 
well log datasets from the Daniudi and Hangjinqi Gas 
Fields were used, with a KAN achieving a test accuracy of 
0.806, surpassing traditional MLPs. For porosity 
prediction, datasets from the Gulf of Mexico wells were 
used, with a KAN achieving an MSE of 0.055. Fine-tuning 
and retraining derived a physical formula representing 
porosity based on well log data, elucidating the 
relationship between porosity and various parameters. 
This study demonstrates that KANs provide accurate and 
interpretable predictions, offering promising prospects 
for carbon sequestration site selection and reservoir 
characterization, thereby enhancing model credibility 
and advancing AI applications in geological sciences. 
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NONMENCLATURE 

Abbreviations  

KAN Kolmogorov-Arnold Network 
MLPs Multi-layer perceptrons  
AI Artificial intelligence 
MSE Mean squared error 

Symbols  

𝛷 A KAN layer 
𝜙𝑞,𝑝 Learnable functions 
𝜙𝑖,𝑗 Activation function 

𝑙 Layer 
𝑥𝑙 Input vector 

 

1. INTRODUCTION 
In recent years, the pressing issue of climate change 

has driven significant interest in carbon sequestration as 
a viable solution for reducing atmospheric CO2 levels 
[1][2]. Carbon sequestration involves capturing carbon 
dioxide from the atmosphere and storing it in geological 
formations, such as reservoirs and caprocks, to mitigate 
its impact on global warming [3]. Accurate 
characterization of these geological formations is critical 
for ensuring their suitability and effectiveness for long-
term carbon storage. Advanced technologies, including 
artificial intelligence (AI), have been increasingly 
employed to evaluate the properties of carbon 
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sequestration reservoirs and caprocks, aiming to 
enhance the reliability and efficiency of these 
assessments [4][5]. 

Traditional AI methods, particularly neural network 
models, have been widely utilized for geological 
evaluations due to their powerful data processing 
capabilities.  

For instance, Xu et al. (2018) used active learning to 
reduce labeling costs in lithology identification, achieving 
high accuracy with Uncertainty Entropy methods [6]. Zhao 
et al. (2018) proposed a CE-SGAN model to address data 
imbalance in lithology identification, achieving 
significant improvements in classification accuracy and 
data enhancement on small-sample logging datasets [7]. 
Baouche et al. (2018) used a two-step approach for 
permeability prediction, combining electrofacies 
classification with non-parametric regression 
techniques, showing robust results compared to 
traditional methods[8]. Wang et al. (2018) developed an 
integrated neural network combining 1D CNN and 
bidirectional GRU, which improved porosity prediction 
accuracy by reducing RMSE and MAE by 10.81% and 
9.85%, respectively [9]. However, the black-box nature of 
these neural network models has raised concerns about 
the credibility and interpretability of the results. The lack 
of transparency in how these models arrive at their 
predictions makes it challenging for researchers and 
practitioners to fully trust and understand the AI-driven 
evaluations. 

The Kolmogorov-Arnold Network (KAN) represents 
a significant advancement in addressing the 
interpretability issues associated with traditional neural 
networks. Inspired by the Kolmogorov-Arnold 
representation theorem, KANs are proposed as a 
powerful alternative to multi-layer perceptrons (MLPs) 
[10]. Unlike MLPs, which have fixed activation functions at 
nodes, KANs feature learnable activation functions on 
edges and replace linear weights with univariate spline 
functions. This simple change enhances both the 
accuracy and interpretability of the model. Smaller KANs 
achieve accuracy comparable to larger MLPs in data 
fitting and solving partial differential equations. 
Moreover, KANs offer intuitive visualization and easy 
interaction with users, proving useful in discovering 
mathematical and physical laws underlying the data 
[11][12]. 

This study employs the latest Kolmogorov-Arnold 
Network (KAN) to interpretably characterize carbon 
sequestration caprocks, focusing on lithology 
identification and porosity prediction. For lithology 
identification, well log datasets from the Daniudi and 

Hangjinqi Gas Fields were utilized, and a KAN with just 26 
neurons (8-10-8) achieved a test accuracy of 0.806, 
significantly surpassing traditional MLP models. Different 
KAN architectures were analyzed to understand their 
performance variations. For porosity prediction, datasets 
from the Gulf of Mexico wells KC-151 and WR-313 were 
employed, with a KAN achieving an impressive test mean 
squared error (MSE) of 0.055. Additionally, the study 
involved fine-tuning and retraining the networks to 
derive a physical formula that represents porosity based 
on well log data. This formula elucidates the relationship 
between porosity and various well log parameters, 
enabling direct and interpretable evaluation of carbon 
sequestration reservoirs.  

2. METHODOLOGY 

2.1 Kolmogorov-Arnold Representation theorem 

The Kolmogorov-Arnold representation theorem is 
the foundation of the Kolmogorov-Arnold network. It is 
a significant theorem in real analysis that describes how 
any continuous function can be represented as a 
combination of a finite number of continuous functions. 
The theorem has important theoretical implications for 
the representation and processing of multidimensional 
functions. Specifically, for any smooth function 
𝑓: [0,1]𝑛 → ℝ , the theorem asserts that there exist 
continuous univariate functions 𝜙𝑞,𝑝: [0,1] → ℝ  and 

𝛷𝑞: ℝ → ℝ such that 

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) = ∑ 𝛷𝑞

2𝑛+1

𝑞=1

(∑𝜙𝑞,𝑝

𝑛

𝑝=1

(𝑥𝑝)) 

where 𝑥 = (𝑥1, … , 𝑥𝑛). The history of this theorem 
dates back to 1957, when it was proposed by Andrey 
Kolmogorov and subsequently proven by Vladimir Arnold 
in 1963. The core idea of the theorem is to approximate 
any multidimensional continuous function by 
constructing an appropriate combination of one-
dimensional continuous functions, thus simplifying 
complex high-dimensional problems into one-
dimensional ones. This theoretical framework has broad 
applications in various fields, including machine learning, 
data mining, and signal processing. In machine learning, 
the Kolmogorov-Arnold representation theorem 
provides theoretical support for the design and 
optimization of neural networks. Multi-layer neural 
networks can approximate complex multidimensional 
inputs by combining one-dimensional activation 
functions. Specifically, the network structure can be 
designed with multiple parallel one-dimensional 
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function layers, which are combined and nonlinearly 
transformed through weighted sums to effectively 
represent and process high-dimensional inputs. 

2.2 Kolmogorov-Arnold network 

The Kolmogorov-Arnold Network (KAN) extends the 
original Kolmogorov-Arnold representation theorem by 
generalizing its two-layer structure to arbitrary widths 
and depths. In various tasks, KAN has demonstrated 
comparable or superior accuracy to traditional multilayer 
perceptrons (MLPs) while maintaining a smaller network 
size. The KAN network consists of multiple KAN layers, 
each utilizing a set of continuous functions to map inputs 
to outputs. Specifically, a KAN layer can be represented 
as 

𝛷 = {𝜙𝑞,𝑝}, 𝑝 = 1,2, … , 𝑛in, 𝑞 = 1,2,… , 𝑛out 

where the functions 𝜙𝑞,𝑝  have learnable 

parameters. A KAN network with 𝐿  layers can be 
described by an integer array [𝑙0, 𝑙1, … , 𝑙𝐿−1]. For two 

consecutive layers 𝑙 and 𝑙 + 1, the 𝑖𝑡ℎ neuron in layer 

𝑙 is denoted as (𝑙, 𝑖), and the 𝑗𝑡ℎ neuron in layer 𝑙 +
1 is denoted as (𝑙 + 1, 𝑗). The activation values of the 
neurons (𝑙, 𝑖) and (𝑙 + 1, 𝑗) are denoted as 𝑥𝑙,𝑖  and 
𝑥𝑙+1,𝑗 , respectively. The activation function connecting 

neurons (𝑙, 𝑖) and (𝑙 + 1, 𝑗) can be represented as 

𝜙𝑖,𝑗, 𝑙 = 0,… , 𝐿 − 1, 𝑖 = 1,… , 𝑛𝑙 , 𝑗 = 1,… , 𝑛𝑙+1 

The calculation process from layer 𝑙 to layer 𝑙 + 1 
can be represented as 

𝑥𝑙+1 = 𝛷𝑙 ∘ 𝑥𝑙 

where 𝑥𝑙 ∈ ℝ𝑛0  is an input vector, 𝛷𝑙  is the 
function matrix corresponding to the 𝑙-th KAN layer. For 
a KAN with 𝐿  layers, the network calculation process 
can be represented as 

KAN(𝑥) = (𝛷𝐿−1 ∘ 𝛷𝐿−2 ∘ ⋯ ∘ 𝛷1 ∘ 𝛷0)𝑥 

3. EXPERIMENTS 

3.1 Lithology identification 

 

\ 

Fig. 1. KAN network structure [8,10,8] 

 
Fig. 2. Test accuracy after model training for lithology 

identification using KAN  
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For lithology identification, well log datasets from 
the Daniudi and Hangjinqi Gas Fields were utilized. The 
logging parameters include gamma ray (GR), acoustic 
(AC), density (DEN), deep lateral (LLD), compensated 
neutron (CNL), shallow lateral (LLS), and caliper (CAL). 
The lithology types include pebble sandstone (PS), 
medium sandstone (MS), fine sandstone (FS), coarse 
sandstone (CS), siltstone (S), carbonate rock (CR), coal 
(C), and mudstone (M). The data were split into training 
and test datasets in an 8:2 ratio. Different KAN networks 
with varying numbers of neurons in the hidden layers 
were constructed, including [8,10,8], [8,32,8], [8,64,8], 
and [8,128,8], as well as networks with different 
numbers of layers such as [8,10,10,8] and [8,32,32,8], to 
explore the performance of KAN networks in lithology 
classification tasks. Additionally, an MLP network with 
[8,10,8] was constructed for comparison.  

The experimental results show that a Kolmogorov-
Arnold Network (KAN) with just 26 neurons [8,10,8] 
achieved a test accuracy of 0.806, significantly surpassing 
traditional MLP models. While increasing the number of 
neurons in the hidden layers led to noticeable 
improvements in test accuracy, the improvement was 
not linear. The performance of [8,128,8] was weaker 
than that of [8,64,8]. Furthermore, the performance of 
multi-layer KAN networks did not improve with the 

addition of more layers, and in some cases, even showed 
a decline. 

3.2 Porosity prediction 

For porosity prediction, datasets from the Gulf of 
Mexico wells KC-151 were employed. A Kolmogorov-
Arnold Network (KAN) with only 6 neurons achieved an 
impressive test mean squared error (MSE) of 0.055, 
demonstrating its efficiency in regression tasks. The 
study went beyond initial model training to include fine-
tuning and retraining of the networks to derive a physical 
formula that represents porosity based on well log data. 
This formula clearly elucidates the relationship between 
porosity and various well log parameters, enabling direct 
and interpretable evaluation of carbon sequestration 
reservoirs from these measurements. This helps improve 
prediction accuracy and enhances the model's 
interpretability, allowing researchers to understand the 
specific impact of each logging parameter on porosity. 

Additionally, by using the physical formula, well log 
data can be directly converted into porosity values, 
reducing reliance on complex numerical models and 
increasing the efficiency and reliability of the evaluation 
process. Moreover, this formula-based approach 
ensures greater transparency and verifiability of the 
results, facilitating broader acceptance and trust in 
practical applications. 

 
Fig. 3. Porosity prediction using the KAN 



5 

4. DISCUSSION 

This study demonstrates the performance 
advantages of the KAN model over the MLP model in the 
task of lithology identification. Under the same number 
of neurons, the accuracy of the KAN increased by nearly 
10%, making KAN networks potentially more suitable for 
edge devices. However, increasing the number of layers 
in the KAN network did not lead to a significant 
improvement in test accuracy and even caused a decline. 
This might be a specific phenomenon occurring in deeper 
KAN networks, requiring further investigation to uncover 
the detailed characteristics of KAN networks. 
Additionally, for the porosity prediction task, this study 
provided interpretable physical formulas through 
network pruning and formalization, which significantly 
aids in understanding the physical implications behind 
the data. However, for larger-scale and more diverse 
input data, the physical interpretations derived from 
KAN networks may become more complex, making them 
difficult for researchers to comprehend. This complexity 
may necessitate the use of mathematical techniques to 
simplify the formulas. 

5. CONCLUSIONS 
This study demonstrates the use of Kolmogorov-

Arnold Networks (KANs) for interpretable intelligent 
characterization of carbon sequestration reservoir 
properties. By leveraging the Kolmogorov-Arnold 
representation theorem, KANs offer a novel approach 
that enhances both the accuracy and interpretability of 
predictions. The research found that smaller KAN models 
can achieve prediction accuracy comparable to much 
larger Multilayer Perceptron (MLP) models while also 
providing physical explanations for their predictions. This 
not only makes KANs more efficient in terms of 
computational resources but also more suitable for 
deployment on edge devices where resources are 
limited. Moreover, the ability of KANs to offer 
interpretable results is a significant advancement, 
addressing one of the primary concerns associated with 
traditional neural networks—their "black-box" nature. 
By extracting physical meanings from data, KANs help 
elucidate the underlying mechanisms driving the 
predictions, thus enhancing the credibility and 
acceptance of AI models in critical applications like 
carbon sequestration. The promising results from this 
study suggest that KANs could play a crucial role in future 
carbon sequestration site selection and reservoir 
property characterization. Their ability to provide 
accurate and interpretable predictions can lead to 
better-informed decisions in the management and 

utilization of geological reservoirs for carbon storage. 
This advancement not only supports the fight against 
climate change by optimizing carbon sequestration 
efforts but also demonstrates the potential of AI 
technology in transforming geological sciences. 
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