# Study on Phase Changes and Migration Characteristics of CO<sub>2</sub> during Leakage in Deep Saline Aquifers for Carbon Sequestration

Li Wang <sup>1,2</sup>, Shuyang Liu <sup>1,2,\*</sup>, Hangyu Li <sup>1,2</sup>, Zhiqiang Wang <sup>1,2</sup>, Qizhi Tan <sup>1,2</sup>, Junrong Liu <sup>1,2</sup>, Genglin Liu <sup>1,2</sup>

1 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

2 Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education,

Qingdao 266580, China

(\*Corresponding Author: shuyang\_liu@126.com)

#### ABSTRACT

In response to global climate change, carbon capture and storage (CCS) has become a key strategy, opening a new chapter in the use of deep underground space. Deep saline aquifers, with their extensive distribution and substantial storage potential, are ideal for CO<sub>2</sub> storage. However, the risks of geological storage, including CO<sub>2</sub> leakage and potential environmental impacts, cannot be ignored. This study aims to investigate the migration behavior, distribution patterns, and phase changes of CO<sub>2</sub> in saline aguifers and their cap rocks through reservoir numerical simulation. A twodimensional reservoir model was constructed, incorporating a highly permeable pathway to simulate a fault as a leakage channel, in order to study the phase change and longitudinal migration characteristics of CO<sub>2</sub> during the leakage process. The simulation results indicate that during the upward leakage process along the fault, CO<sub>2</sub>, under the influence of buoyancy, tends to enter the upper strata. As it migrates upward, some of the CO<sub>2</sub> is affected by rock adsorption and becomes trapped at the interface between the fault and the overlying dense rock of the saline aquifer, distributing stably. It is noteworthy that during the leakage process, CO<sub>2</sub> primarily migrates in a supercritical state; however, when it reaches a critical depth, it transitions to a liquid phase. This phase change from supercritical state to liquid state can impact the storage capacity and pressure, thereby affecting the stability of the formations.

**Keywords:** CO<sub>2</sub> storage, Saline aquifer; Phase change; Migration; Leakage

# 1. INTRODUCTION

The massive emission of  $CO_2$  is one of the main factors contributing to global warming, which poses a serious threat to human life and property. Therefore, reducing the concentration of  $CO_2$  in the atmosphere has become a critical scientific issue to address. In this regard,  $CO_2$  capture and storage (CCS) technology is considered one of the key technologies to combat global climate change. Furthermore, this emerging technology has also sparked widespread interest in the development and utilization of deep underground spaces. Deep saline aquifers, due to their wide distribution and enormous storage potential, are regarded as important reservoirs for implementing  $CO_2$  sequestration <sup>[1,2]</sup>.

Although CO<sub>2</sub> sequestration has many benefits, the risks and potential hazards associated with its leakage cannot be ignored. Human production activities can compromise the integrity of rock formations, and the presence of unsealed faults, natural fractures, and other factors can create pathways for CO<sub>2</sub> to migrate upwards. Injected CO<sub>2</sub> in saline aquifers may escape through these leakage pathways due to various influences, such as buoyancy, leading to a certain degree of leakage risk associated with CO<sub>2</sub> sequestration.

Research on the deep underground utilization of  $CO_2$ geological sequestration started early internationally, resulting in industrial or demonstration projects such as Norway's North Sea Sleipner project <sup>[3,4,5]</sup> and Australia's  $CO_2CRC$  Otway demonstration project, aimed at monitoring and research <sup>[6]</sup>. China's first deep saline aquifer  $CO_2$  geological sequestration project, the National Energy Group Ordos Carbon Capture and Storage (CCS) Demonstration Project (also known as the Shenhua CCS Demonstration Project), integrates the previously proposed concept model for  $CO_2$  geological sequestration underground utilization space evaluation

<sup>#</sup> This is a paper for International CCUS Conference 2024 (ICCUS 2024), June 20-22, 2024, Beijing, China.

<sup>[7]</sup> and the latest insights into site characterization and  $CO_2$  underground migration monitoring and prediction of the Ordos CCS demonstration project <sup>[8]</sup>. This study aims to provide reference for the approval and management policy formulation of underground utilization space for  $CO_2$  sequestration projects by investigating the deep saline aquifer  $CO_2$  geological sequestration underground utilization space evaluation methods.

In 2005, Hassanzadeh et al. studied the impact of different formation parameters on CO<sub>2</sub> sequestration in saline aquifers <sup>[9]</sup>. In 2008, Behzadi et al. simulated a quasi-one-dimensional model to validate the influencing factors and provided examples illustrating the mechanisms controlling reservoir leakage rates and fluid attenuation through shallower formations <sup>[10]</sup>. In 2011, Zeidouni et al. proposed an analytical model to evaluate the pressure changes in the overlying aquifer caused by leakage from the storage aquifer <sup>[11]</sup>. Oruganti et al. introduced the concept of overpressure critical lines (CoP) as a simple metric for leakage risk assessment and mapped these on the reservoir to identify risk areas <sup>[12]</sup>.

In 2012, Lu et al. developed a computational model to simulate the behavior of leakage faults connecting saline CO<sub>2</sub> storage reservoirs and overlying freshwater aquifers <sup>[13]</sup>. Salahshoor et al. proposed a new pressure control method based on a nonlinear model predictive control scheme to reduce the risk of CO<sub>2</sub> re-entering the atmosphere due to the failure of cap rock integrity <sup>[14]</sup>. In 2019, Buscheck et al. utilized downhole pressure and TDS monitoring to capture the impact of leakage depth along legacy wells, regional groundwater flow, and aquifer heterogeneity on leakage detection <sup>[15]</sup>. Ma et al. investigated the feasibility of using the ensemble Kalman filter (EnKF) data assimilation framework to estimate the hydraulic properties of storage formations and predict CO<sub>2</sub> plume migration from monitoring measurements, including instantaneous pressure and saturation data from branch wells and time-lapse seismic data modeled as vertically averaged saturation differences <sup>[16]</sup>. Onishi et al., as participants of the US Department of Energy's National Risk Assessment Partnership (NRAP), developed a science-based approach to quantify the risk profile of CO<sub>2</sub> geological sequestration sites <sup>[17]</sup>.

In 2020, Liu et al. proposed a method for predicting porosity and permeability using borehole observations and surface geophysical data <sup>[18]</sup>. In 2021, Luther et al. studied the effect of stratification on the onset time of convective instability and the flow patterns beyond the onset time during  $CO_2$  sequestration <sup>[19]</sup>. Yahaya-Shiru et al. used systematic and process-based seismic and well

log data sets to describe the structure and stratigraphic framework of sandstone reservoirs within oilfields to determine their capacity for effective CO<sub>2</sub> sequestration <sup>[20]</sup>. Gan et al. conducted a system-level risk assessment of China's Shenhua CO<sub>2</sub> sequestration formations using the National Risk Assessment Partnership Integrated Assessment Model for Carbon Sequestration (NRAP-IAM-CS) <sup>[21]</sup>. Zhou Yinbang et al. suggested that highquality monitoring data can effectively reduce potential leakage risks and that multiple monitoring combinations facilitate long-term safe geological CO<sub>2</sub> sequestration <sup>[22]</sup>.

Currently, saline aquifers as potential storage media for CO<sub>2</sub> sequestration have received widespread attention and research. Extensive field investigations, laboratory simulations, and numerical modeling studies have been conducted to explore the characteristics and potential of saline aquifers as CO<sub>2</sub> sequestration reservoirs. Despite the certain sequestration capacity and stability of saline aquifers as CO<sub>2</sub> storage reservoirs, several issues and challenges remain in practical research.

Firstly, the characteristics of saline aguifers are highly complex, including variations in reservoir pore structure, permeability, and salinity, posing challenges for modeling and predicting the sequestration process. Secondly, the long-term stability of saline aquifers is a critical consideration, requiring assessment of the longterm retention of CO<sub>2</sub> post-sequestration and the effectiveness of the sequestration system. Additionally, evaluating and monitoring the leakage risk during saline aquifer sequestration is an important topic, necessitating research on leakage mechanisms, pathways, and rates to ensure the safety and sustainability of the sequestration process. Therefore, further research and exploration are necessary to optimize saline aquifer sequestration technology and provide a more comprehensive scientific basis for CO<sub>2</sub> geological sequestration.

Overall, research on saline aquifers as CO<sub>2</sub> sequestration reservoirs has made progress, but further studies are required to address existing issues and challenges to ensure the feasibility and sustainability of saline aquifer CO<sub>2</sub> sequestration technology. This study aims to predict the migration and leakage of CO<sub>2</sub> sequestered in saline aquifers, considering phase changes, by deeply investigating formation migration patterns and leakage mechanisms. The goal is to provide scientific decision-making support for CO<sub>2</sub> geological sequestration projects, ensuring the safety of the sequestration process.

#### 2. METHODOLOGY

Based on the existing research foundation and the engineering applications predominantly practical focused on CO<sub>2</sub> sequestration in deep saline aguifers, this study utilizes CMG, a widely applied reservoir numerical simulation software, to build a typical deep saline aquifer geological model. By examining the CO<sub>2</sub> sequestration process in saline aquifers, we analyze the characteristics of CO<sub>2</sub> migration and distribution during sequestration, the storage capacity of CO<sub>2</sub>, and the types and extents of CO<sub>2</sub> sequestration mechanisms. This analysis aims to provide reference and basis for hypothesizing potential leakage scenarios during the sequestration process.

#### 2.1 Model description

The numerical simulation software selected for this study is CMG-GEM, a mature and powerful commercial software known for its ease of operation. This study focuses on the conceptual model of CO<sub>2</sub> sequestration in saline aquifers, selecting a set of saline aquifers with typical geological characteristics for analysis, and emphasizing the migration of CO<sub>2</sub> between different layers. By establishing a conceptual model, it is possible to deeply investigate the migration characteristics of CO<sub>2</sub> in saline aquifers, including migration pathways, rates, and directions between different layers. As subsequent studies focus on the vertical leakage and migration of CO<sub>2</sub> within the aquifer, a 2D vertical model is constructed, as shown in Figure 1.

The model is based on the actual CO<sub>2</sub> injection engineering of the Shenhua CCS Demonstration Project. A CO<sub>2</sub> injection well is set up on the left side of the model and a production well is set up on the right side of the model to balance formation pressure. The model grid is 50×1×70 in x, y and z directions, respectively, and each grid cell measures 20 × 20 × 20 m. The lateral length of the model is 1000 m, whereas the vertical span is 1400 m. The top and bottom depths of the reservoir are 600 m and 2000 m, respectively.



Figure 1: 2D Model of a Saline Aquifer

The basic geological data for the model were collected and organized from published literature and publicly available engineering data, with reference to similar conditions from the Shenhua Ordos sequestration project <sup>[23]</sup>. Other parameters of the model are listed in Table 1.

| Table 1. Reservoir Parameters in the Model              |        |                                         |                      |  |  |  |
|---------------------------------------------------------|--------|-----------------------------------------|----------------------|--|--|--|
| Reservoir Parameter                                     | Value  | Reservoir Parameter                     | Value                |  |  |  |
| Surface Temperature, °C 8.2                             |        | Depth of Gas-Water Contact, m           | 100                  |  |  |  |
| Geothermal Gradient, °C·(100m) <sup>-1</sup>            | 2.99   | Rock Compressibility, kPa <sup>-1</sup> | 4.5×10 <sup>-7</sup> |  |  |  |
| Reference Depth, m                                      | 2000   | Reference Pressure, MPa                 | 20.3                 |  |  |  |
| Maximum Injection Rate, m <sup>3</sup> ·d <sup>-1</sup> | 250000 | Injection Temperature, °C               | 50                   |  |  |  |

in the Medel

The entire simulation process involves injecting stratified CO<sub>2</sub> into the saline aquifer with a bottomhole temperature of 50°C. By controlling the opening and closing of different intervals of injection well and production well, the effect of stratified injection well is achieved. The injection process lasts for three years and three months, after which the injection well is closed. The simulation monitors the changes of CO<sub>2</sub> in the formation, simulating its migration, physicochemical reactions, and sequestration mechanisms underground.

Monitoring continues until 217 years after the cessation of injection.

The interlayers between each saline aquifer are separated by caprocks with a porosity of 0.01, permeability of 0.001×10<sup>-3</sup> µm<sup>2</sup>, and a vertical/horizontal permeability ratio of 0.1. The geological parameters for each saline aguifer are detailed in Table 2. Saline aguifers 1 through 4 are shallow aquifers and serve as distribution locations for upward CO<sub>2</sub> leakage. Saline aquifers 5 through 9 are target injection layers where geological parameters, referencing actual formation conditions [23],

comply with the anti-rhythm rule, with permeability gradually increasing from bottom to top.

| Table 2: Geological Parameters of Saline Aquifers in the Model |               |                     |          |                                                             |                                                     |                  |  |  |  |
|----------------------------------------------------------------|---------------|---------------------|----------|-------------------------------------------------------------|-----------------------------------------------------|------------------|--|--|--|
| Saline<br>Aquifer                                              | Top Depth (m) | Bottom Depth<br>(m) | Porosity | Horizontal Permeability (10 <sup>-</sup> $^{3} \mu m^{2}$ ) | Vertical Permeability (10 <sup>-3</sup> $\mu m^2$ ) | Thickness<br>(m) |  |  |  |
| 1                                                              | 660           | 700                 | 0.3      | 1000                                                        | 100                                                 | 40               |  |  |  |
| 2                                                              | 800           | 840                 | 0.3      | 1000                                                        | 100                                                 | 40               |  |  |  |
| 3                                                              | 900           | 940                 | 0.3      | 1000                                                        | 100                                                 | 40               |  |  |  |
| 4                                                              | 1000          | 1040                | 0.3      | 1000                                                        | 100                                                 | 40               |  |  |  |
| 5                                                              | 1400          | 1440                | 0.3      | 1000                                                        | 100                                                 | 40               |  |  |  |
| 6                                                              | 1580          | 1620                | 0.3      | 850                                                         | 85                                                  | 40               |  |  |  |
| 7                                                              | 1740          | 1800                | 0.3      | 800                                                         | 80                                                  | 60               |  |  |  |
| 8                                                              | 1860          | 1880                | 0.3      | 700                                                         | 70                                                  | 20               |  |  |  |
| 9                                                              | 1940          | 1980                | 0.3      | 500                                                         | 50                                                  | 40               |  |  |  |

In the model, there is an open fault that spans 9 saline aquifers with a width of 60 m. The fault's top is at 660 m and bottom at 2000 m, with a porosity of 0.15 and permeability of  $5000 \times 10^{-3} \ \mu\text{m}^2$ . The vertical/horizontal permeability ratio is 0.1. This fault provides a pathway for upward migration of CO<sub>2</sub>. Figure 2 shows the distribution of porosity in the leakage model, illustrating the shape of the fault as depicted in Figure 2.



Figure 2. Porosity distributions of leakage model

# 2.2 *CO*<sup>2</sup> injection capacity and storage capacity

During the sequestration process, the injection rate and the total amount of  $CO_2$  injected are among the most critical issues in the study. These factors directly affect the  $CO_2$  sequestration potential and injection capacity of the model.

Over 3 years,  $CO_2$  was continuously injected at a rate of 250,000 m<sup>3</sup>/day, with a total of 2.88×10<sup>8</sup> m<sup>3</sup> of  $CO_2$ 

injected. The maximum injection pressure is 35 MPa, the maximum injection rate is 250,000 m<sup>3</sup>/d, and the injection temperature is 50°C. Under these injection conditions, the injected  $CO_2$  is in a supercritical state. After the injection stopped, the distribution and migration of  $CO_2$  within the formation were simulated over a period of 217 years.

To optimize the  $CO_2$  injection process, this study employs a layered injection-production technique and real-time monitoring of the gas production rates in the production wells. When gas production is detected in the production wells, the geological  $CO_2$  sequestration efficiency significantly decreases. Therefore, by monitoring the gas production rates in the production wells, adjustments to the production layers can be made in time before gas breakthrough occurs, thereby improving sequestration efficiency.

# 3. RESULTS AND DISCUSSION

In this study, a typical deep saline aquifer geological model is established and simulated using CMG-GEM. By examining the process of  $CO_2$  leakage through an open fault in the saline aquifer, the study analyzes the migration characteristics and phase changes of  $CO_2$  during the leakage and migration process.

# 3.1 CO<sub>2</sub> migration characteristics

In this section,  $CO_2$  saturation and the mole fraction of  $CO_2$  in the formation water are used as indicators to analyze the migration of  $CO_2$  within the model. Faults typically exhibit relatively high permeability and connectivity, allowing  $CO_2$  to migrate more rapidly through fault areas. In the leakage model, due to the presence of the fault, all saline aquifers are interconnected, providing a migration pathway for  $CO_2$ .

As shown in Figure 3, the injected  $CO_2$  migrates upward due to the presence of the fault. The  $CO_2$ saturation and solubility in the lower 7th, 8th, and 9th saline aquifers on the right side of the fault significantly decrease compared to a non-leakage scenario. The CO<sub>2</sub> that should have been stored in the 7th, 8th, and 9th saline aquifers migrate upward along the intersections of the fault and the saline aquifers.



Figure 3. Distribution of CO<sub>2</sub> under different conditions at the end of injection

Faults typically have higher permeability, allowing  $CO_2$  to be transported through the fault at a relatively high velocity. When injection ceases, the  $CO_2$  has migrated above the 5# saline layer and is close to a stratigraphic level of about 1200 meters. During the injection process, the driving force for  $CO_2$  comes from the pressure difference between the injection well and the shallow saline layer connected to the fault. Due to the stratigraphic span exceeding 1000 meters, the significant pressure difference results in the rapid transport of  $CO_2$  to the depth of 1200 meters in the formation. Inferred from the geothermal gradient, when  $CO_2$  migrates upward to about 940 meters, it transitions from a supercritical state to a liquid state. At this point,

the phase composition of  $\text{CO}_2$  saturation includes both supercritical and liquid states.

After 5 years of cessation of injection (Figure 4a, Figure 4b), it can be seen that the  $CO_2$  has migrated upward by about 840 meters through the formation and has traversed the 3# and 4# saline layers. Observations of the underlying saline layers reveal that the  $CO_2$ , which originally migrated to the right through the fault, has a tendency to migrate leftward after the injection stops. The  $CO_2$  saturation in the area where the fault intersects with the saline layer on the right side has decreased.

Comparing Figure 4c with Figure 4a, the  $CO_2$  in the fault has risen further, but without subsequent  $CO_2$  replenishment, the discontinuous distribution of

supercritical  $CO_2$  in the formation becomes more pronounced. As seen in Figure 4e, after 27 years of cessation of injection, the  $CO_2$  has migrated upward to the 1# saline layer and has also undergone lateral migration. At this point, the migration of  $CO_2$  is influenced by buoyancy and diffusion. By comparing Figure 4d with Figure 4f, it can be observed that when  $CO_2$  enters the upper 1, 2, 3, and 4# saline layers, it spontaneously diffuses from areas of high concentration to areas of low concentration. At this time, a concentration gradient exists between the fault and the shallow saline layer, and  $CO_2$  will be transferred from high-concentration areas to low-concentration areas through diffusion in the pore space. After 17 years, the upper saline layers clearly show that when a certain amount of  $CO_2$  is dissolved in the saltwater, the density of the saltwater increases, causing the denser saltwater to migrate under the influence of gravity and allowing lighter saltwater to rise, thus achieving convective mixing within the layer and increasing the  $CO_2$  solubility in the lower part.



Figure 4 Distribution of CO2 under different conditions from 5 years to 27 years after stopping injection

By comparing Figure 4c with Figure 4e, it can be seen that there is a discontinuous distribution of  $CO_2$  in the fault. This indicates that  $CO_2$  is separated and confined to local areas within the fault, unable to freely flow and diffuse to other places. This confined state is mainly influenced by the adoption action of the rock. On the surface of the fault rock and within the pores,  $CO_2$  may undergo adsorption, fixing  $CO_2$  molecules to the rock surface or pore walls, thereby limiting their free movement and diffusion.

Figure 5a shows that at this stage,  $CO_2$  is mainly influenced by buoyancy, migrating upward to the saline

layers or above the fault. Therefore, the  $CO_2$  saturation below the cap layer increases, while the  $CO_2$  saturation in the lower part of the saline layers decreases. The  $CO_2$ in the upper saline layers continues to migrate laterally, and the discontinuously distributed  $CO_2$  below the fault is bound in place by the adsorption action of the rock, with no movement occurring.

Comparing Figure 5b with Figure 4f, it is found that under the influence of the concentration gradient, the phenomenon of  $CO_2$  diffusing and escaping from highconcentration saline layers to the overlying lowconcentration strata becomes more evident. Combined with Figure 5a, it can be seen that the amount of  $CO_2$  diffused out is small and the escape rate is slow, which is

due to the modest injection volume of the model and the stratigraphic levels controlled by the fault.



Figure 5 Distribution of CO<sub>2</sub> under different conditions from 57 years to 217 years after stopping injection

Figures 5b, 5d, and 5f collectively illustrate that  $CO_2$  continues to diffuse within the strata, with dissolution adsorption and density-driven convection occurring.  $CO_2$  can migrate by dissolving in the water and adsorbing onto the rock within the saline layers, thereby diffusing and transporting laterally within the medium. At the same time,  $CO_2$  has a higher density, making it denser than the saline layers. This density difference leads to convection of supercritical  $CO_2$  to move downward. Since the density of supercritical  $CO_2$  is greater than that of the surrounding saline layers, it will sink and move towards lower areas, forming density-driven convective flow. Therefore, at the end of the  $CO_2$  plume, the solubility below will increase and diffuse into the surrounding areas.

#### 3.2 Phase changes of CO<sub>2</sub> during leakage

As  $CO_2$  leaks upward along the fault to the shallow saline layer, there may be a change in its phase state, transitioning from the original supercritical state to liquid and gaseous  $CO_2$ . These phase state changes are primarily influenced by the formation pressure, temperature, and the physical properties of  $CO_2$ . Variations in the geological conditions can lead to transitions between phases, with the pressure and temperature of  $CO_2$  determining whether it remains in a liquid, supercritical, or gaseous state. During the upward leakage process along the fault, changes in the phase state of  $CO_2$  can significantly affect its migration characteristics and the effectiveness of sequestration. This is of critical importance for the design and assessment of carbon sequestration projects.



Figure 6 The phase distribution of CO<sub>2</sub> in the leakage model

The distribution patterns of  $CO_2$  in the formation are shown in Figure 6. As indicated in the figure, the forms of  $CO_2$  presence in the leakage model are supercritical, dissolved, and liquid states. Most of the supercritical  $CO_2$ in the formation is kept stable by geological sequestration effects, but it is essentially in a free state. If there is a change in the geological structure, the  $CO_2$ stored geologically can migrate. In the leakage model, the supercritical  $CO_2$  migrates upward along the fault. As the degree of migration increases, both the temperature and pressure of the formation decrease. Once they fall below the critical point, where either the temperature or pressure drops below the critical value, the  $CO_2$  will transition to a liquid state.

The critical depth in this model is set at 940 meters. Referencing this critical temperature, the leakage model is divided into upper and lower parts. Using the amount of substance of  $CO_2$  as an indicator, the changes in  $CO_2$  content in various regions over different times are analyzed. The distribution maps of  $CO_2$  in different areas are shown in Figure 7.

Comparing Figure 6 with Figure 7, it is observed that the change curve for the area above the critical depth in Figure 7 is similar to the CO<sub>2</sub> liquid state change curve in Figure 6, with both showing a significant increase starting and following the same trend of change at the same time. This indicates that after that time, CO<sub>2</sub> leaked to a depth above the critical point and transitioned from a supercritical state to a liquid state, altering its properties and sequestration stability. The density of supercritical  $CO_2$  is higher, allowing for more  $CO_2$  to be stored per unit volume compared to liquid CO<sub>2</sub>. This implies that when the phase state changes as described, the storage capacity of the saline aquifer will decrease. Additionally, when CO<sub>2</sub> transitions from a supercritical state to a liquid state, the decrease in density leads to an increase in the volume of CO<sub>2</sub>, which may cause changes in the pressure of the saline aquifer and affect the stability of the sequestration system.



Figure 7. Variation of CO<sub>2</sub> content in different regions of the leakage model

#### 4. CONCLUSIONS

Based on existing theoretical foundations and using actual on-site sequestration data and geological information, this work constructed a leakage model containing a fault through reservoir numerical simulation methods. This work focused on analyzing the phase state changes of  $CO_2$  during the leakage process and explored the potential impacts. Conclusions can be drawn as follows:

During the leakage process,  $CO_2$  is subject to a variety of mechanisms. It is driven by the pressure difference between formations and the net buoyancy of  $CO_2$  itself, while capillary forces, adsorption resistance, and viscous forces impede its migration. As  $CO_2$  migrates upward along the fault, the pressure difference decreases, reducing the driving force, leading to some  $CO_2$  being bound in local areas, unable to freely flow and diffuse to other places.

When leakage occurs,  $CO_2$  transitions from a supercritical state to a liquid state during the upward migration process. When liquid  $CO_2$  leaks into shallow saline layers, it can cause a series of hazards, posing risks to human safety and environmental property. When selecting sites for  $CO_2$  sequestration projects in saline aquifers, areas with faults or fractures should be avoided to ensure the long-term and stable sequestration of  $CO_2$ .

# REFERENCE

[1]Rubin E, De Coninck H. IPCC Special Report on Carbon Dioxide Capture and Storage[J]. UK: Cambridge University Press. TNO (2004): Cost Curves for CO<sub>2</sub> Storage, Part, 2005, 2: 14.

[2]Jianqiang Guo, Dongguang Wen, Senqi Zhang, et al. Carbon dioxide geological storage potential evaluation and demonstration project in China[J]. Geological Survey of China, 2015, 2(4): 36-46.

[3]Chadwick R A, Noy D, Arts R, et al. Latest Time-lapse Seismic Data from Sleipner Yield New Insights into CO<sub>2</sub> Plume Development[J]. Energy Procedia, 2009, 1(1): 2103-2110.

[4]Chadwick A, Williams G, Delepine N, et al. Quantitative Analysis of Time-lapse Seismic Monitoring Data at the Sleipner  $CO_2$  Storage Operation[J]. The Leading Edge, 2010, 29(2): 170-177.

[5]Ghosh R, Sen M K, Vedanti N. Quantitative Interpretation of CO<sub>2</sub> Plume from Sleipner (North Sea), Using Post-stack Inversion and Rock Physics Modeling[J]. International Journal of Greenhouse Gas Control, 2015, 32: 147-158.

[6]Geologically Storing Carbon: Learning from the Otway Project Experience[M]. CSIRO publishing, 2014.

[7]Yujie Diao, Yang yang, Xufeng Li, et al. Management on Developing Deep Underground Space for CO<sub>2</sub> Geological Storage[J].Proceedings of the CSEE, 2021, 41(04): 1267-1273+1534.

[8]Diao Y, Zhu G, Li X, et al. Characterizing CO<sub>2</sub> Plume Migration in Multi-layer Reservoirs with Strong Heterogeneity and Low Permeability Using Time-lapse 2D VSP Technology and Numerical Simulation[J]. International Journal of Greenhouse Gas Control, 2020, 92: 102880.

[9]Hassanzadeh H, Pooladi-Darvish M, Keith D W.
Modelling of Convective Mixing in CO<sub>2</sub> Storage[J]. Journal of Canadian Petroleum Technology, 2005, 44(10):43-51.
[10]Behzadi S H. Comparison of Chemical and Hysteresis

CO<sub>2</sub> Trapping in the Nugget Formation[C]. SPE 132477, 2010.

[11]Zeidouni M, Pooladi-Darvish M, Keith D W. Analytical Models for Determining Pressure Change in an Overlying Aquifer due to Leakage[J]. Energy Procedia, 2011, 4: 3833-3840.

[12]Oruganti Y D, Gupta A K, Bryant S L. Analytical Estimation of Risk due to Pressure Buildup During  $CO_2$  Injection in Deep Saline Aquifers[J]. Energy Procedia, 2011, 4: 4140-4147.

[13]Lu C, Sun Y, Buscheck T A, et al. Uncertainty Quantification of  $CO_2$  Leakage Through a Fault with Multiphase and Nonisothermal Effects[J]. Greenhouse Gases: Science and Technology, 2012, 2(6): 445-459.

[14]Salahshoor K, Hajisalehi M H, Sefat M H. Nonlinear Model Identification and Adaptive Control of CO<sub>2</sub> Sequestration Process in Saline Aquifers Using Artificial Neural Networks[J]. Applied Soft Computing, 2012, 12(11): 3379-3389. [15]Buscheck T A, Mansoor K, Yang X, et al. Downhole Pressure and Chemical Monitoring for CO<sub>2</sub> and Brine Leak Detection in Aquifers above a CO<sub>2</sub> Storage Reservoir[J]. International Journal of Greenhouse Gas Control, 2019, 91: 102812.

[16]Ma W, Jafarpour B, Qin J. Dynamic Characterization of Geologic CO<sub>2</sub> Storage Aquifers from Monitoring Data with Ensemble Kalman Filter[J]. International Journal of Greenhouse Gas Control, 2019, 81: 199-215.

[17]Onishi T, Nguyen M C, Carey J W, et al. Potential CO<sub>2</sub> and Brine Leakage through Wellbore Pathways for Geologic CO<sub>2</sub> Sequestration using the National Risk Assessment Partnership Tools: Application to the Big Sky Regional Partnership[J]. International Journal of Greenhouse Gas Control, 2019, 81: 44-65.

[18]Liu M, Grana D. Petrophysical Characterization of Deep Saline Aquifers for CO<sub>2</sub> Storage using Ensemble Smoother and Deep Convolutional Autoencoder[J]. Advances in Water Resources, 2020, 142: 103634.

[19]Luther E E, Shariatipour S M, Dallaston M C, et al. Solute Driven Transient Convection in Layered Porous Media[M]//Energy and Sustainable Futures: Proceedings of 2nd ICESF 2020. Cham: Springer International Publishing, 2021: 3-9.

[20]Yahaya-Shiru M, Igwe O, Obafemi S. 3D Structural and Stratigraphic Characterization of X Field Niger Delta: Implications for CO<sub>2</sub> Sequestration[J]. Journal of Petroleum Exploration and Production Technology, 2022: 1-19.

[21]Gan M, Nguyen M C, Zhang L, et al. Impact of Reservoir Parameters and Wellbore Permeability Uncertainties on CO<sub>2</sub> and Brine Leakage Potential at the Shenhua CO<sub>2</sub> Storage Site, China[J]. International Journal of Greenhouse Gas Control, 2021, 111: 103443.

[22]Yinbang Zhou, Rui Wang, Yingfu He, et al. Analysis and Comparison of Typical Cases of CO<sub>2</sub> Geological Storage in Saline Aquifer[J].Petroleum Geology and Recovery Efficiency,2023,30(02):162-167.

[23]Li Wang. Numerical Simulation of CO<sub>2</sub> Geological Sequestration of Shanxi Formation in Ynlin area, Ordos Basin[D].Northwest University,2014.