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ABSTRACT 

 Acquisition of Lithium-ion battery’s (LIB) internal 
temperature is crucial to ensure the safety of the battery 
system for electric vehicle (EV), yet the immeasurable 
nature of it renders this goal as challenging. Approaches 
based on contact sensing and thermal models are widely 
investigated, but their realizability and effectiveness still 
beg for further validation. Methods based on 
electrochemical sensing are receiving more attention 
due to their attractive features. However, the largest gap 
lies in the access to the impedance information for on-
vehicle application. Using results derived from the 
passive electrochemical impedance spectroscopy (EIS) 
with real driving conditions, this paper presents a 
thorough solution to obtain the internal temperature of 
LIB. With the accurate high-frequency part of passive EIS 
at hand, the internal temperature is estimated by 
employing the regression relationship between 
temperature and its corresponding EIS landscape. 
Independent of models and sensors, the proposed 
scheme uses the mere electrical measurements of LIB 
and achieves the internal temperature estimation with 
refreshing rate of 1Hz. This sensorless scheme can meet 
the real-time requirements of battery management so 
that precious time for safety countermeasures to act is 
saved. The proposal in this paper is expected to 
supplement the battery management techniques with 
critical inputs to secure the safer use of EV. 
Keywords: Lithium-ion battery, Internal temperature 
estimation, Spectral analysis, Passive EIS 

1. INTRODUCTION 
In the pursuit of faster charging and longer driving 

distance, the working conditions of LIB in EVs are 
deteriorating, and the temperature rise of the battery is 
becoming more and more fierce. Use of batteries in 
specific temperature window, with their safety, 
performance and longevity properly guaranteed, 

becomes a tough challenge to deal with [1]. For early 
avoidance of hazardous outcomes, internal temperature 
acquisition of LIB becomes a central issue in the field of 
EV battery management.  

To measure the internal temperature of LIB in a more 
direct way, various novel sensors are planted into the 
battery [2]. The results of this implantation have higher 
confidence, and are generally used as a reference for 
internal temperature estimation. As an invasive 
procedure, the characteristics of the operated battery 
generally need extra verification by means of X-ray or 
performance tests [3]. The modified battery has certain 
loss in insulation, tightness and performance. 

Apart from the direct measurement, many model-
based approaches are actively discussed in the open 
literature. The electro-thermal model is closely 
investigated in related research, mainly based on the 
equivalent circuit model (ECM). Based on such a model, 
a joint estimation framework can be established, where 
the state of charge (SOC) and the state of function (SOF) 
are additionally estimated [4]. ECM oversimplifies the 
working principle of LIB, and in order to pursue higher 
descriptive accuracy, electrochemical model (EM) is 
adopted. Due to the more explicit physical significance, 
the description of thermal characteristics becomes more 
comprehensive, as with the kinetics within LIB [5]. 
Although EM is prominent among models in accuracy 
and descriptive ability, it still remains in laboratory due 
to its complexity. Besides the gap to application, model-
based approaches all have a significant number of 
parameters. Obtaining these parameters accurately is 
close to impossible, and inaccurate parameters can also 
cause numerical instability or significant bias in the 
results. 

As a non-invasive and intuitive method, the use of EIS 
to estimate the internal temperature stands as a 
promising solution [6]. EIS is frequently discussed and 
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practiced in the field of LIB, and its advantages are 
becoming more and more recognized by researchers. 
There is a tight relationship between the impedance 
behavior of LIB and its internal states. In particular, the 
influence of temperature on impedance is significant, 
and such relationship is often utilized in the estimation 
and diagnosis of the internal temperature [7]. Since this 
correlation is reflected electrically, EIS is expected to 
provide a faster update rate for the internal temperature 
estimation, which can satisfy the real-time requirements 
in battery management. Without the help of sensors and 
thermal models, EIS is also deemed as sensorless, or 
called the electrochemical sensing [8]. 

All of the above EIS-based approaches achieve 
satisfactory results, but most of them use offline EIS as 
original input. For a more practical application, a smaller 
yet efficient EIS measurement scheme is urged. At 
present, relevant works are carried out, and there are 
two typical kinds, namely, the active and passive ways to 
obtain EIS. Active EIS generates a specific broadband 
current excitation by modifying the on-board controllers, 
while passive EIS directly uses the current excitation and 
voltage response in a moving vehicle. Active EIS involves 
hardware and software modification of power 
electronics, and requires good coordination between 
multiple sub-systems, which manifests as difficult. In 
contrast, the driving condition is more convenient 
without the generation of excitations. 

In this paper, passive EIS is used to estimate the 
internal temperature of LIB. Through the specially 
designed road test, the current excitation of the real 
vehicle is obtained, and the impedance spectrum is 
calculated with the excitation. With passive EIS, the 
internal temperature of the battery is estimated with 
relatively high real-time performance. This paper 
completes the whole process from fast EIS acquisition to 
internal temperature estimation, which can provide 
references for more effective safety and thermal 
management of the battery system. 

2. METHODS 

2.1 Experimental 

The acquisition of passive EIS depends on the real 
conditions from the driving. In order to ease the 
acquisition and verification, real current excitation on 
high voltage (HV) network on EV is collected with high 
precision. By applying the equivalent current excitation 
to single cell, the voltage response can be obtained, 
which enables the spectral investigation for a variety of 
batteries in different states with a given working 

condition. For these purposes, separate vehicle tests and 
cell tests are designed. 

Vehicle Test The vehicle under test is a GAC Aion Y 
model. Vehicle tests involve multiple conditions in and 
around the city. Due to a higher typicality, this paper 
chooses the city driving conditions in the evening rush-
hours for further analysis. The current pulsations on the 
HV DC bus of EV are recorded in real time during driving. 
High bandwidth Hall current clamp is selected as the 
sensor front-end. The data acquisition device digitalizes 
the output of the sensor, and transmits it to the 
computer for recording. The current measurements are 
normalized with the capacity of the battery system on 
vehicle, and the current curve in C-rate is obtained. A 
positive value denotes charging. 

Cell Test With the current excitation at hand, the cell 
tests under different states are carried out. Because of 
the high bandwidth of the excitation, test with 
traditional charging equipment could introduce great 
spectral losses. In this paper, a modified electrochemical 
testbench is used to cover the excitation generation with 
a bandwidth greater than 2MHz. The batteries under test 
are placed in a climate chamber and the tests are 
initiated after the thermal equilibrium is reached at the 
target temperature. The operation of the battery in 
actual driving is uniformly simulated, and the current, 
voltage and surface temperature of the batteries are 
constantly recorded during the test. Such a test 
configuration restores the excitation in the real driving 
and achieves comparability at sample level. 

2.2 Passive EIS Acquisition 

This paper presents the passive EIS acquisition 
process as shown in Fig.1. 

There are 3 steps to acquire the passive EIS. Length 
of the analysis window is anaT in second, corresponding to

s anaf T⋅ samples, where sf is the sampling rate in Hertz. 
To improve the utilization of the data, samples in the 
window are updated with a certain overlap ratio of k . 
The update is carried out in a first-in-first-out fashion by 
removing the oldest (1 ) s anaM k f T= − samples and adding 
the same amount of the latest samples each time.  

In the spectral analysis, the typical windowing and 
fast Fourier transform (FFT) are performed to obtain the 
original spectrum of current and voltage. Windowing 
effectively reduces the leakage error of FFT, but often 
ignores the information at both ends of the window, so 
the overlap ratio k is necessary. The value of k is generally 
between 1/2 and 2/3. The smaller k is, the larger the 
computation of passive EIS is, and the higher the update 
rate is. Since the current waveform in driving is more of 
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a random signal in nature, a common sinusoidal window 
function is chosen. 

After performing FFT, spectrum ( )U ω and ( )I ω are 
obtained, where ω is the angular velocity. Since the 
excitation and response of the battery are generally 
polluted by the noises, it is necessary to use the power 
spectrum-based method for processing. If the response 
signal-to-noise-ratio (SNR) is low, the H1 estimator is 
generally used to calculate the impedance, while if the 
excitation SNR is low, the H2 estimator could yield better 
results. After quantitative evaluation, both SNRs in cell 
test are at a relatively high level, while that of voltage is 
even higher. Therefore, H2 estimator is selected for the 
processing in this paper.  

The raw impedances are calculated using Formula 
(1), which is the H2 estimator. 

                 ( ) ( ) ( )u u i uZ P Pω ω ω− −=         (1) 
where, u uP − is the self-spectrum density of voltage and

i uP− is the cross-spectral density of voltage and current. 
Due to the low quality of excitation, the original 

impedances obtained from driving conditions are far 
from perfect results as offline EIS, because the power of 
the random excitation is spread over a wide frequency 
range, causing inferior SNRs for individual frequencies. 
This result cannot be utilized effectively and needs to be 
averaged with a radius∆ around a specific frequencyΩ , 
as in Equation (2). 
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The impedances of continuous frequencies can also 
be obtained using formula (2) to gather more clues about 
the kinetics of LIB. 

2.3 Inductance correction 

An inductive feature at high frequencies exists for 
both the offline and the passive EIS, which causes shift of 
impedance at mid- and high-frequency areas. The 
removal of inductance by distribution of relaxation time 
(DRT) transform is a feasible scheme [9]. DRT is a post-
processing method for EIS, which can convert the 
impedances into a form similar to the spectrum. 
Resolving of DRT requires a specific kernel and solving 
configuration. Main body of the DRT kernel is generally a 
number of RC entries in series. The solving of DRT 
generally relies on the nonlinear fittings in the least 
square family, and its optimization objective generally 
incorporates regularization to increase the smoothness 
of the result. 

By solving the DRT of the kernel, the optimal solution 
of inductance can be obtained at the same time. The 
inductance correction of EIS can be realized by bringing 
the distribution function back into the kernel free of 
inductance. Inductance-corrected passive EIS can be 
used for subsequent diagnosis of the battery states. 
Offline EIS tests are also carried out in this paper, and the 
inductance correction of these data is also performed. 

2.4 Estimation of internal temperature 

EIS reflects the rapidly varying reactions and kinetics 
inside a LIB. Such characteristics are specific not only to 
the chemistry, but also to the battery states. Under 
different conditions, EIS shows a fickle nature preventing 
the hidden relationships from being discovered. 
Although the literatures in Chapter I provide good state 
estimations by using impedance of a specific frequency 
or range, these frequencies are inherently contingent. 
For different batteries or other conditions, their 
effectiveness could topple. It is viable to characterize the 
state of the battery with limited inputs, but the reliability 
could be sacrificed and the underlying principles 

 
Fig.1 Procedures for acquiring passive EIS and internal temperature 
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oversimplified. Since there is not yet a universal 
impedance model to approximate the EIS under a variety 
of conditions, the necessary engineering treatment still 
finds useful. This paper presents an engineering-oriented 
approach as shown in Fig.1, that is, using the offline EIS 
at different SOCs and temperatures to form a 
multidimensional map, and the internal temperature is 
determined by looking-up tables. Offline EIS are 
measured after the batteries are fully settled and can be 
viewed as a snapshot in a specific state. It is assumed that 
the EIS of a working LIB only moves along the 
multidimensional surface represented by the map. 

3. MATERIAL AND METHODS 
The excitation condition used in this paper is shown 

in Fig.2(a). 

Fig.2(b) shows the corresponding voltage response 
tested at 25℃. The battery used is Panasonic 
NCR18650BD with a rated capacity of 3.2Ah and 
chemistry of NCM. It can be seen that the current 
fluctuates around zero, while the voltage gradually 
decreases over time. The SOC at the beginning of the test 
is 55%, and the shift in SOC after the test is -1.26%. The 

maximum rise in surface temperature is 0.23℃. The 
same driving condition in Fig.2(a) is also replayed at 10℃ 
and 40℃. Three groups of excitation and response data 
are obtained, and the passive EIS results are shown in 
Fig.3 by using the processing flow in Fig.1. 

Fig.3(a)-(c) show the transition of passive EIS over 
time at 10℃, 25℃ and 40℃ respectively. Batteries are 
tested from 55 %SOC. The extracted passive EIS ranges 
from 0.3Hz to 3kHz. The length of analysis window for 
the passive EIS is 60sanaT = , and the overlap ratio is 2/3, 
implying each result will be output every 30s. The 
influence of temperature on passive EIS is very 
significant. It can be seen that the impedances of the 
middle and high frequencies remain basically 
unchanged, while those of low frequencies fluctuate 
with time. Since the SOC and temperature changes are 
mild, this fluctuation mainly comes from the time-
variance associated with the current [10]. Fig.3(d)-(f) 
show the reference EIS along with the first and last 
sample of passive EIS. It can be seen that the passive EIS 
are in good acceptance with the reference, especially at 
high frequencies. Based on this, consecutive high-
frequency impedances are picked as the input of internal 
temperature estimation in this paper.  

Fig.4 shows the reference EIS of different 
temperatures at 55 %SOC, with an interval of 2℃. 

It can be seen that the impedance curve shifts 
regularly. Such EIS results are suitable for the 
characterization of the internal temperature with high 
resolution. For the estimation of the internal 
temperature, its regression relationship with reference 
EIS is extracted. The frequency range of the passive EIS 
used for internal temperature estimation in this paper is 

 
Fig.2 Driving condition used in this paper 

 
Fig.3 Passive EIS results 
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100~2kHz. Commonly used regression methods include 
linear, Gaussian process regression (GPR) and support 
vector machine (SVM), and both linear and GPR can 
achieve good regression. In this paper, linear regression 
is used to estimate the internal temperature of LIB. 

Since the real driving conditions fail to arouse 
obvious temperature rise, a high-current condition is 
specially designed by intercepting and mixing different 
driving conditions. Two cell tests are carried out at 10℃ 
and 40℃. The corresponding current and voltage time 
series are obtained by applying such condition. Passive 
EIS is calculated according to the process shown in Fig.1. 
The length of the analysis window is 3s and the overlap 
is 2/3, that is, each passive EIS sample can be expected 
every second. The passive EIS results in Fig.5 can be 
obtained by analyzing the entire time series. These 
passive EIS are all processed with inductance correction. 

Reference EIS of 10℃ and 20℃ are given in Fig.5(a), 
and those of 40℃ and 50℃ are shown in Fig.5(b). It can 
be seen that the passive EIS gradually moves from the 
vicinity of the reference EIS at lower temperature to that 
at higher temperature, and this shift is mainly caused by 
the internal temperature change, so that the internal 
temperature can be simply inferred. Using the linear 

regression mentioned above, it is possible to calculate 
the internal temperature from the passive EIS, and the 
results are shown in Fig.5(c) and (d). The change of 
surface temperature ‘SURF’ and estimated internal 
temperature ‘INTT’ over time are given, both of which 
rise rapidly at the beginning and reach stabilization after 
a certain time. Due to the existence of excitation, the 
internal temperature is always higher than the surface, 
and a fixed difference is maintained after equilibrium, 
which is consistent with the actual situation. There are 
fluctuations in the internal temperature estimations, but 
this is not entirely due to the measurement errors from 
passive EIS. By analyzing particular fluctuations, 
especially the step-down pulses, it can be found that they 
have a strong correlation with current zero-crossing, 
suggesting that the internal temperature derived from 
passive EIS reflects a more meticulous internal heat 
production and absorption process. The fluctuations are 
more drastic at high temperatures, because the voltage 
SNR drops significantly. The internal temperature 
estimation given in this paper is a result reflected by the 
electrical characteristics rather than the heat transfer, 
thus a near instantaneous temperature sensing can be 
achieved.  

 
Fig.4 Reference EIS at different temperatures 

 
Fig.4 Reference EIS at different temperatures 
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The internal temperature estimated in this paper 
reflects more of the temperature accompanying the 
electrochemical processes of LIB, or the average 
temperature of internal reaction, which is closer to the 
working principle of the battery and is one of the better 
temperature characterizations that are accessible. The 
estimation period of one second is much shorter than the 
thermal time constant of LIB, which can better meet the 
needs of battery management, not only achieve more 
effective thermal management and prolong life-cycle, 
but also provide a strong basis for safety diagnosis and 
avoid hazards. 

4. CONCLUSIONS 
Safety concerns are persistent constraints on the 

wide deployment of EVs. By obtaining the internal 
temperature of LIB faster, thermal runaway is expected 
to be avoided, hence the catastrophic consequences. 
Current battery management techniques need extra 
high-quality inputs to achieve better risk control and 
isolation. The estimation of internal temperature based 
on electrochemical sensing is investigated frequently. 
Although it demonstrates high effectiveness and 
feasibility, there is still a barrier to on-vehicle 
applications, namely the timely acquisition of EIS. 

In order to achieve a more feasible access to internal 
temperature, an estimation strategy based on passive 
EIS is designed in this paper. The time-domain current 
data for passive EIS is obtained by arranging real vehicle 
tests. Through the modification of electrochemical 
testing system, the excitation is reproduced with high 
precision, and the corresponding time series under 
different conditions are collected. Using the designed 
processing flow, acceptable passive EIS results are 
obtained. Due to the higher accuracy and smaller 
analysis window, high-frequency passive EIS is chosen for 
internal temperature estimation. By analyzing offline EIS 
at different temperatures and SOCs, the linear regression 
between internal temperature and impedance is 
extracted. With the help of this relationship and the 
constantly updated passive EIS, the internal temperature 
is conveniently calculated and compared to the surface 
temperature. Without complex algorithms and models, 
this idea is friendly for on-vehicle applications. The 
internal temperature estimation in this paper also 
achieves a faster update rate, so its timely usage for 
earlier decisions on safety controls can be available. This 
paper realizes the full process from passive EIS 
acquisition to internal temperature estimation, which 
provides a valuable reference for relevant vehicle 
applications. 
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